Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
HUSP, a concept representing advanced sustainable agriculture, goes beyond the current practices of permaculture, envisioning a future where food production systems have evolved over centuries of continuous optimization. The concept, inspired by traditional Indigenous practices, imagines a United States of Pocahontas (USP) where agricultural methods prioritize harmony with nature, rejecting environmentally harmful practices such as plowing and the use of petroleum-based fertilizers and pesticides. In this idealized future, HUSP leads to higher food yields per acre, improved human health, and a thriving health tourism industry. The realization of HUSP principles in the real world hinges on collaborative experimentation and knowledge sharing between practitioners of various sustainable approaches, including permaculture, biodynamic farming, and native plant cultivation. Such a project would require a supportive environment with minimal government regulation to encourage creative solutions and accelerate progress. HUSP aims to not only "rediscover" lost agricultural knowledge but to push the boundaries of sustainable agriculture, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems, producing abundant, nutritious food while maintaining ecological balance.
WOFATI structures demonstrate remarkable effectiveness due to their unique design features and emphasis on passive systems. The "two-skin" system, characterized by a double layer of membrane, protects the structure from moisture, ensuring dryness and longevity. WOFATI designs prioritize the use of natural and locally sourced materials, primarily wood and earth, significantly reducing the building's environmental impact and embodying the "freaky-cheap" philosophy pioneered by Mike Oehler. The core principle of "Annualized Thermal Inertia" harnesses the earth's thermal mass to regulate temperature fluctuations, providing passive heating in the winter and cooling in the summer. Large windows strategically placed on the uphill side, along with a spacious gable roof on the downhill side, often incorporating glazing, maximize passive solar gain, further enhancing energy efficiency. By minimizing reliance on artificial heating and cooling systems, WOFATIs achieve substantial energy savings. Allerton Abbey, the first WOFATI built at Wheaton Labs, exemplifies the practicality and success of this building technique
The willow feeder system, developed by permaculture expert Paul Wheaton, offers a "freaky-cheap" and sustainable alternative to conventional septic systems and sewage treatment plants. This system employs a unique method of managing human waste, transforming it into a nutrient-rich fertilizer known as "willow candy." Unlike composting toilets, which rely on decomposition, willow feeders utilize sealed garbage cans to create a dry environment that mummifies the waste, effectively eliminating pathogens while conserving valuable carbon and nitrogen. A small amount of sawdust is added to each can, primarily for aesthetics. After aging for two years in these sealed containers, the resulting pathogen-free "willow candy" is ready to be applied as fertilizer. However, not all plants can handle the high nutrient content of this unique fertilizer. "Poop beasts", such as willow, cottonwood, poplar, and bamboo trees, thrive on "willow candy" and readily absorb its nutrients. The willow feeder system exemplifies permaculture principles by turning human waste into a valuable resource, fostering sustainable gardening practices and minimizing environmental impact. Paul Wheaton, a prominent figure in the permaculture community, has implemented the willow feeder system at his property, Wheaton Labs, and actively promotes it through his online platforms, including permies.com. He often refers to waste as a "feed" for another system, encouraging a shift in perspective towards a more holistic view of resource management.
"Pooless," a term often associated with permaculture and natural living, encourages ditching conventional shampoos and soaps for healthier hair, reduced chemical exposure, and a more sustainable lifestyle. This shift to natural hair care involves an adjustment period as the scalp rebalances its sebum production. However, feedback reveals a range of positive outcomes, making the transition worthwhile. Many individuals report achieving a natural balance, resulting in less oily hair and less frequent washing. Some experience improvements in hair texture, noticing increased volume and curl. The vinegar rinse, following a baking soda wash, is crucial for smoothing the hair cuticle and detangling, contributing to a healthier and more manageable mane. Beyond the aesthetic benefits, some users report a decrease in scalp problems, including dandruff and itchiness, potentially due to the absence of harsh chemicals. Others have even noted unexpected benefits like migraine relief, suggesting a potential connection between overall health and a more natural approach to personal care. "Poolessness" aligns with permaculture's principles of minimizing chemical usage and embracing natural processes, empowering individuals to take control of their health and reduce their environmental impact.
Hugelkultur, is an advanced permaculture technique for creating self-sustaining raised garden beds filled with decomposing wood. The technique involves burying a variety of wood materials, including logs, branches, twigs, and even whole trees, under layers of soil, creating a complex and dynamic environment for plant growth. As the wood decomposes, it acts as "a sponge to hold water," reducing the need for irrigation. This decomposition also generates heat, which can extend the growing season, particularly in cooler climates. The shrinking wood creates air pockets, making the beds "self-tilling" and promoting excellent aeration for plant roots. These "parking spaces for water and nutrients," as described by Paul Wheaton, enhance soil fertility, attract beneficial microorganisms, and release nutrients, reducing or eliminating the need for fertilizers. Hugelkultur beds are remarkably adaptable and can be built in various shapes and sizes, as exemplified by Sepp Holzer's large-scale project in Dayton, Montana, which features nearly a kilometer of hugelkultur beds.