Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
HUSP, a concept representing advanced sustainable agriculture, goes beyond the current practices of permaculture, envisioning a future where food production systems have evolved over centuries of continuous optimization. The concept, inspired by traditional Indigenous practices, imagines a United States of Pocahontas (USP) where agricultural methods prioritize harmony with nature, rejecting environmentally harmful practices such as plowing and the use of petroleum-based fertilizers and pesticides. In this idealized future, HUSP leads to higher food yields per acre, improved human health, and a thriving health tourism industry. The realization of HUSP principles in the real world hinges on collaborative experimentation and knowledge sharing between practitioners of various sustainable approaches, including permaculture, biodynamic farming, and native plant cultivation. Such a project would require a supportive environment with minimal government regulation to encourage creative solutions and accelerate progress. HUSP aims to not only "rediscover" lost agricultural knowledge but to push the boundaries of sustainable agriculture, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems, producing abundant, nutritious food while maintaining ecological balance.
The berm shed is more than just a simple storage structure; its construction incorporates advanced techniques that prioritize sustainability, durability, and integration with the natural environment. Earthworks play a crucial role, as careful shaping of the landscape is required to create the berm that covers a portion of the shed's sloping roof. This berm acts as a natural insulator and thermal mass, helping to regulate temperature inside the structure. The "attic" cell design, as discussed in source, involves a specific configuration at the termination ends of the berm shed, further enhancing its thermal efficiency. Round wood timber framing, a technique using logs instead of dimensional lumber, is often employed, lending structural strength and a rustic aesthetic. A key consideration is the long-term durability of the wood in contact with soil. Source emphasizes the importance of peeling the bark from posts before burial to reduce the probability of rot, highlighting the evolution of construction techniques for increased longevity. Additionally, using gravel in post holes, as described in source, helps with drainage and further protects the wood from moisture. These advanced concepts, when combined, result in a berm shed that is not only functional and visually appealing but also a testament to sustainable building practices deeply rooted in permaculture principles.
he willow feeder system is a sustainable and "freaky-cheap" approach to human waste management developed by permaculture expert Paul Wheaton. This system utilizes a dry environment inside sealed garbage cans to mummify human waste, which prevents composting and the release of pathogens. The system is designed to be a safe and effective alternative to conventional septic systems and sewage treatment plants. A small amount of sawdust is added to each can, mainly for aesthetics. After two years, the resulting pathogen-free material, referred to as "willow candy," can be safely used as fertilizer for trees that can handle its high nutrient content, known as "poop beasts." These trees include willow, cottonwood, poplar, and bamboo. The willow feeder system embodies permaculture principles by transforming human waste into a valuable resource for growing beneficial plants while minimizing environmental impact.
Dry outhouses offer a multitude of positive environmental impacts, aligning perfectly with the core principles of permaculture and sustainable living. Unlike conventional flush toilets that waste gallons of clean water and contribute to pollution, dry outhouses conserve water and prevent contamination. The "no pee" policy, combined with effective urine diversion systems, further minimizes the volume of waste and potential for groundwater pollution. The use of sawdust not only controls odors but also facilitates a dry composting process, essentially mummifying the waste over time and reducing it to poop-jerky after two years. This aged material is then safely used as a nutrient-rich fertilizer for "poop beast" trees like willows, poplars, and cottonwoods. This willow feeder system not only prevents harmful waste from entering the environment but also actively enriches the soil, promoting the growth of beneficial plants and trees. By avoiding chemical fertilizers and promoting natural decomposition, dry outhouses contribute to a healthier ecosystem, aligning with the HUSP (Horticulture of the United States of Pocahontas) concept that emphasizes sustainable land management practices. Furthermore, the absence of a water-intensive septic system eliminates the risk of leaks and contamination, safeguarding groundwater and promoting ecological balance. Therefore, dry outhouses offer a compelling example of how simple, well-designed systems can have a profound positive impact on the environment.