Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The willow feeder system is a sustainable and "freaky-cheap" method of managing human waste, developed by permaculture innovator Paul Wheaton as an alternative to traditional septic systems and sewage treatment plants. This innovative system transforms human waste into a nutrient-rich fertilizer, called "willow candy," through a process of mummification. Instead of composting the waste, as in composting toilets, the willow feeder system relies on a dry environment within sealed garbage cans to prevent decomposition and the survival of pathogens. A small amount of sawdust is added to the cans, primarily for aesthetics. After two years of aging, the "willow candy" becomes pathogen-free and can be safely used as fertilizer. This material, rich in carbon and nitrogen, is particularly beneficial for "poop beasts," a term used to describe trees like willow, cottonwood, poplar, and bamboo, which can tolerate and thrive on the high nutrient levels. By turning human waste into a valuable resource for growing these beneficial plants, the willow feeder system embodies the core principles of permaculture, promoting a closed-loop cycle that minimizes waste and environmental impact.
HUSP, a concept representing advanced sustainable agriculture, goes beyond the current practices of permaculture, envisioning a future where food production systems have evolved over centuries of continuous optimization. The concept, inspired by traditional Indigenous practices, imagines a United States of Pocahontas (USP) where agricultural methods prioritize harmony with nature, rejecting environmentally harmful practices such as plowing and the use of petroleum-based fertilizers and pesticides. In this idealized future, HUSP leads to higher food yields per acre, improved human health, and a thriving health tourism industry. The realization of HUSP principles in the real world hinges on collaborative experimentation and knowledge sharing between practitioners of various sustainable approaches, including permaculture, biodynamic farming, and native plant cultivation. Such a project would require a supportive environment with minimal government regulation to encourage creative solutions and accelerate progress. HUSP aims to not only "rediscover" lost agricultural knowledge but to push the boundaries of sustainable agriculture, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems, producing abundant, nutritious food while maintaining ecological balance.
WOFATI structures are characterized by a thoughtful design that prioritizes passive systems and natural, locally sourced materials. The "two-skin" system, composed of a double layer of polyethylene membrane, encapsulates the earthen roof, providing a durable and waterproof barrier. The lower layer hugs the structure, while the upper layer defines the thermal mass surrounding it, with at least eight inches of dirt between the layers and sixteen inches on top. WOFATI designs emphasize a harmonious integration with the surrounding woodland, incorporating the "soil on wood" building technique. This method eliminates the need for a conventional concrete foundation, making construction faster and more affordable. A distinctive feature of WOFATI houses is the large gable roof on the downhill side, often incorporating glazing to allow light penetration, while at least 35% of the uphill wall features windows for optimal passive solar gain. This strategic placement and sizing of windows is crucial for maximizing natural light and regulating internal temperature, contributing to the effectiveness of Annualized Thermal Inertia.