Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique

One Mason bee can pollinate 200 times more flowers than one honey bee. Unlike honey bees, Mason bees are native to North America.

The distinction between "woodland" and "forest" is subtle but significant within the context of permaculture, particularly in Paul Wheaton's approach to Wofati design. While "forest" implies a focus on traditional forestry practices, often associated with monoculture and resource extraction, "woodland" evokes a more holistic and interconnected ecosystem. Woodland management, as exemplified in Ben Law's books The Woodland Way and The Woodland Year, emphasizes sustainable practices that prioritize biodiversity, ecological balance, and human integration with the natural world. A woodland is seen as a space where humans are active participants, nurturing and benefiting from the ecosystem's abundance, similar to the Native American land management practices that inspire the HUSP (Horticulture of the United States of Pocahontas) concept. In contrast, a forest, within this framework, is often viewed as a resource to be exploited, a perspective that aligns with the concerns raised about conifer monocultures and their detrimental impact on biodiversity and soil health. Therefore, "woodland," as used in the context of Wofati, signifies a conscious shift towards a more harmonious and sustainable relationship between humans and the natural world. This distinction underscores the importance of terminology in shaping our understanding and approach to land management within the permaculture movement.

WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, is an innovative approach to sustainable building developed by permaculture expert Paul Wheaton. WOFATI structures are designed to be eco-friendly, utilizing locally sourced natural materials, primarily wood and earth. These structures are intended to be located on or near woodlands, promoting a harmonious integration with the natural surroundings. Annualized Thermal Inertia, a key element of WOFATI design, harnesses the thermal mass of the surrounding earth to provide passive heating in winter and cooling in summer, thereby minimizing the need for artificial temperature regulation. WOFATI structures are inspired by the work of Mike Oehler, a pioneer in earth-sheltered building known for his simple, "freaky-cheap" designs, which Wheaton has adapted and refined to further reduce construction costs. WOFATI buildings are typically characterized by a large gable roof on the downhill side, with at least 35% of the uphill wall featuring glass or other light-transmitting materials to maximize passive solar gain. Allerton Abbey, the first WOFATI structure, and Wofati 0.8 are both located at Wheaton Labs in Montana and serve as prominent examples of this unique building style.