Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur, is an advanced permaculture technique for creating self-sufficient, raised garden beds by burying wood beneath the soil. Hugelkultur beds can be built in various shapes and sizes, from small backyard gardens to large farm-scale operations. This technique utilizes a variety of wood, from small twigs to whole trees, which decompose over time to create a beneficial environment for plant growth. The wood acts as a sponge, holding water and reducing or eliminating the need for irrigation. As the wood decomposes, it attracts beneficial microorganisms and releases nutrients, creating a fertile "soil on wood" environment that requires minimal fertilization. Hugelkultur is an environmentally sustainable technique that utilizes organic materials that would otherwise be discarded, embodying the permaculture principles of working with nature and reducing waste.. This technique is also applicable to diverse climates and has been proven effective even in desert environments

WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, represents an innovative approach to sustainable building, coined by permaculture expert Paul Wheaton. This building technique combines the affordability and simplicity of Mike Oehler’s earth-sheltered designs with Wheaton's focus on cost reduction and integration with the natural environment. WOFATI structures prioritize the use of readily available, natural materials, such as wood and earth, minimizing reliance on manufactured products and reducing the building's environmental footprint. Annualized Thermal Inertia, a key principle of WOFATI, utilizes the surrounding earth as a thermal mass, storing heat in the summer to warm the building during winter and retaining cool temperatures from winter to moderate summer heat, thereby minimizing energy consumption for heating and cooling. WOFATI designs typically feature large windows on the uphill side to maximize passive solar gain, further reducing energy needs. WOFATIs are intended to be situated on or near a woodland, embracing the concept of harmonious integration with nature. Notable examples of WOFATI structures, including Allerton Abbey and Wofati 0.8, can be found at Wheaton Labs in Montana.

Hugelkultur offers advanced techniques and benefits for sustainable gardening and food production. This permaculture method utilizes buried wood to create raised garden beds, fostering a thriving ecosystem that reduces reliance on external inputs. As the wood decomposes, it transforms into "a sponge to hold water," decreasing irrigation needs and attracting beneficial microorganisms that enhance soil fertility. The shrinking wood creates air pockets, naturally aerating the soil and promoting a "self-tilling" effect. This "soil on wood" technique enhances soil health by creating "parking spaces for water and nutrients", ultimately minimizing the need for fertilizers. Hugelkultur beds can be constructed on varying scales, from small gardens to large farms, and are particularly well-suited for locations with limited rainfall, such as deserts. This versatile approach allows gardeners to cultivate diverse "garden plants" while minimizing environmental impact.

Hugelkultur, is an advanced permaculture technique for creating self-sustaining raised garden beds filled with decomposing wood. The technique involves burying a variety of wood materials, including logs, branches, twigs, and even whole trees, under layers of soil, creating a complex and dynamic environment for plant growth. As the wood decomposes, it acts as "a sponge to hold water," reducing the need for irrigation. This decomposition also generates heat, which can extend the growing season, particularly in cooler climates. The shrinking wood creates air pockets, making the beds "self-tilling" and promoting excellent aeration for plant roots. These "parking spaces for water and nutrients," as described by Paul Wheaton, enhance soil fertility, attract beneficial microorganisms, and release nutrients, reducing or eliminating the need for fertilizers. Hugelkultur beds are remarkably adaptable and can be built in various shapes and sizes, as exemplified by Sepp Holzer's large-scale project in Dayton, Montana, which features nearly a kilometer of hugelkultur beds.