Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The lorena is an innovative cooktop design specifically for rocket stoves, aimed at enhancing heat transfer and overall cooking efficiency. It functions by incorporating a metal plate featuring a central hole positioned directly above the rocket stove's burn chamber. This central hole allows for direct heat application to large pots, ensuring rapid heating. Furthermore, the metal plate itself serves as an additional cooking surface, offering versatility for various cooking tasks. The lorena's design seeks to maximize the utilization of heat generated by the rocket stove, making it an energy-efficient cooking solution. Proposed implementations of the lorena often include integration into an outdoor kitchen setting, enhancing its practicality. The sources mention the lorena as an example of the continuous innovation and improvement within the realm of rocket stove technology.
WOFATI structures demonstrate remarkable effectiveness due to their unique design features and emphasis on passive systems. The "two-skin" system, characterized by a double layer of membrane, protects the structure from moisture, ensuring dryness and longevity. WOFATI designs prioritize the use of natural and locally sourced materials, primarily wood and earth, significantly reducing the building's environmental impact and embodying the "freaky-cheap" philosophy pioneered by Mike Oehler. The core principle of "Annualized Thermal Inertia" harnesses the earth's thermal mass to regulate temperature fluctuations, providing passive heating in the winter and cooling in the summer. Large windows strategically placed on the uphill side, along with a spacious gable roof on the downhill side, often incorporating glazing, maximize passive solar gain, further enhancing energy efficiency. By minimizing reliance on artificial heating and cooling systems, WOFATIs achieve substantial energy savings. Allerton Abbey, the first WOFATI built at Wheaton Labs, exemplifies the practicality and success of this building technique
The "freaky-cheap" aspect of WOFATI is fundamental to its appeal and accessibility. Inspired by Mike Oehler's pioneering work in earth-sheltered building, WOFATI prioritizes utilizing readily available natural materials, primarily wood and earth, minimizing reliance on expensive, manufactured products. By embracing the "freaky-cheap" ethos, WOFATI construction drastically reduces building costs, making sustainable living a more attainable reality. The emphasis on "soil on wood" construction eliminates the need for a traditional concrete foundation, further reducing expenses. This approach also facilitates rapid building times, as demonstrated by the construction of WOFATI structures at Wheaton Labs, such as Allerton Abbey. The use of recycled or salvaged materials, whenever possible, further contributes to the affordability of WOFATI buildings. By minimizing material costs and construction time, WOFATI empowers individuals to create sustainable and comfortable dwellings without incurring significant financial burdens.
Dry outhouses offer a multitude of positive environmental impacts, aligning perfectly with the core principles of permaculture and sustainable living. Unlike conventional flush toilets that waste gallons of clean water and contribute to pollution, dry outhouses conserve water and prevent contamination. The "no pee" policy, combined with effective urine diversion systems, further minimizes the volume of waste and potential for groundwater pollution. The use of sawdust not only controls odors but also facilitates a dry composting process, essentially mummifying the waste over time and reducing it to poop-jerky after two years. This aged material is then safely used as a nutrient-rich fertilizer for "poop beast" trees like willows, poplars, and cottonwoods. This willow feeder system not only prevents harmful waste from entering the environment but also actively enriches the soil, promoting the growth of beneficial plants and trees. By avoiding chemical fertilizers and promoting natural decomposition, dry outhouses contribute to a healthier ecosystem, aligning with the HUSP (Horticulture of the United States of Pocahontas) concept that emphasizes sustainable land management practices. Furthermore, the absence of a water-intensive septic system eliminates the risk of leaks and contamination, safeguarding groundwater and promoting ecological balance. Therefore, dry outhouses offer a compelling example of how simple, well-designed systems can have a profound positive impact on the environment.