Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

WOFATI structures demonstrate remarkable effectiveness due to their unique design features and emphasis on passive systems. The "two-skin" system, characterized by a double layer of membrane, protects the structure from moisture, ensuring dryness and longevity. WOFATI designs prioritize the use of natural and locally sourced materials, primarily wood and earth, significantly reducing the building's environmental impact and embodying the "freaky-cheap" philosophy pioneered by Mike Oehler. The core principle of "Annualized Thermal Inertia" harnesses the earth's thermal mass to regulate temperature fluctuations, providing passive heating in the winter and cooling in the summer. Large windows strategically placed on the uphill side, along with a spacious gable roof on the downhill side, often incorporating glazing, maximize passive solar gain, further enhancing energy efficiency. By minimizing reliance on artificial heating and cooling systems, WOFATIs achieve substantial energy savings. Allerton Abbey, the first WOFATI built at Wheaton Labs, exemplifies the practicality and success of this building technique

WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.

The willow feeder system is a permaculture solution for managing human waste, developed by Paul Wheaton, that prioritizes safety, sustainability, and nutrient cycling. It is designed to be a "freaky-cheap" alternative to conventional septic systems and sewage treatment plants, utilizing readily available materials like garbage cans and sawdust. The system focuses on mummifying human waste in a dry environment within sealed garbage cans to prevent composting and the escape of pathogens. This dry environment also stops the loss of valuable carbon and nitrogen to the atmosphere, which is a common issue with hot composting. After two years of aging in the sealed cans, the resulting "willow candy" is pathogen-free and can be safely applied as fertilizer. While this nutrient-rich material could be used on any garden, it is best suited for "poop beasts" like willow, cottonwood, poplar, and bamboo, which can readily absorb the high nutrient content without harm. This system promotes a closed-loop approach, turning what is often considered waste into a valuable resource for growing beneficial plants.

A dry outhouse, a simple and sustainable alternative to conventional flush toilets and septic systems, is frequently discussed within permaculture circles as a means of minimizing environmental impact and maximizing resource utilization. This type of outhouse is characterized by a pit dug into the ground, strategically located on a higher elevation point to encourage water runoff and maintain dryness. Key design elements for a successful dry outhouse include a "no pee" policy, the use of ample sawdust for odor control and composting, and urine diversion mechanisms, particularly important for accommodating female anatomy. While concerns about groundwater contamination exist, proper placement, construction, and the incorporation of heavy-feeding trees or plants like willows in a "tree bog" system can mitigate these risks. Furthermore, the integration of a urine separator can significantly reduce the volume and toxicity of waste, facilitating easier composting and nutrient recycling. The dry outhouse, particularly when combined with urine diversion and careful management, offers a cost-effective and environmentally sound approach to sanitation, aligning with permaculture principles of resource conservation and closed-loop systems.