Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.
WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, represents an innovative approach to sustainable building, coined by permaculture expert Paul Wheaton. This building technique combines the affordability and simplicity of Mike Oehler’s earth-sheltered designs with Wheaton's focus on cost reduction and integration with the natural environment. WOFATI structures prioritize the use of readily available, natural materials, such as wood and earth, minimizing reliance on manufactured products and reducing the building's environmental footprint. Annualized Thermal Inertia, a key principle of WOFATI, utilizes the surrounding earth as a thermal mass, storing heat in the summer to warm the building during winter and retaining cool temperatures from winter to moderate summer heat, thereby minimizing energy consumption for heating and cooling. WOFATI designs typically feature large windows on the uphill side to maximize passive solar gain, further reducing energy needs. WOFATIs are intended to be situated on or near a woodland, embracing the concept of harmonious integration with nature. Notable examples of WOFATI structures, including Allerton Abbey and Wofati 0.8, can be found at Wheaton Labs in Montana.
A berm shed is an innovative, earth-sheltered structure designed for storage, blending seamlessly into the landscape while offering practical benefits. This natural building technique utilizes readily available materials like logs and earth, minimizing environmental impact and cost. The berm shed's design, as described in the sources, features a sloping roof covered with soil, creating a natural berm that provides insulation and helps regulate temperature. The round wood timber framing techniques used in its construction, relying on logs rather than dimensional lumber, further enhance its sustainability and aesthetic appeal. The berm shed is often incorporated into permaculture designs, serving as a visual and sound barrier, enhancing privacy, and creating a microclimate for plant growth. Its construction involves earthworks, carefully shaping the surrounding landscape to create the berm and ensure proper drainage. The berm shed's unique design, combining natural materials and earth-sheltering principles, offers a durable, cost-effective, and aesthetically pleasing storage solution that integrates harmoniously with the surrounding environment.
HUSP, an acronym for "Horticulture of the United States of Pocahontas," represents an advanced, nature-centric agricultural system envisioned by Paul Wheaton. It goes beyond contemporary permaculture, envisioning a future where food production systems have undergone centuries of optimization, inspired by traditional Indigenous practices that existed before European colonization. HUSP posits a hypothetical United States of Pocahontas (USP), where agriculture prioritizes harmony with nature, rejecting environmentally harmful practices like plowing and the use of petroleum-based fertilizers and pesticides. This system would not only produce abundant, nutritious food, but also lead to improved human health and a thriving health tourism industry within the USP. Achieving HUSP in the real world necessitates collaborative experimentation and knowledge exchange between permaculture, biodynamic farming, and native plant cultivation practitioners. This would involve a 2,000-acre plot divided into smaller sections, where experts can develop and refine HUSP principles, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems. Crucially, this project requires a supportive environment with minimal government regulation to encourage creativity and accelerate progress toward a truly sustainable agricultural future.