Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

The berm shed is more than just a simple storage structure; its construction incorporates advanced techniques that prioritize sustainability, durability, and integration with the natural environment. Earthworks play a crucial role, as careful shaping of the landscape is required to create the berm that covers a portion of the shed's sloping roof. This berm acts as a natural insulator and thermal mass, helping to regulate temperature inside the structure. The "attic" cell design, as discussed in source, involves a specific configuration at the termination ends of the berm shed, further enhancing its thermal efficiency. Round wood timber framing, a technique using logs instead of dimensional lumber, is often employed, lending structural strength and a rustic aesthetic. A key consideration is the long-term durability of the wood in contact with soil. Source emphasizes the importance of peeling the bark from posts before burial to reduce the probability of rot, highlighting the evolution of construction techniques for increased longevity. Additionally, using gravel in post holes, as described in source, helps with drainage and further protects the wood from moisture. These advanced concepts, when combined, result in a berm shed that is not only functional and visually appealing but also a testament to sustainable building practices deeply rooted in permaculture principles.

WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.

"HUSP," an acronym for "Horticulture of the United States of Pocahontas," is a term coined by Paul Wheaton to represent a hypothetical agricultural system practiced in a fictional nation called the United States of Pocahontas (USP). In this imagined scenario, Pocahontas emerges as a strategic leader, thwarting European colonization and leading to the formation of the USP. This fictional nation's agricultural practices are characterized by a deep respect for the Earth, rejecting environmentally harmful methods like plowing and the use of petroleum-based fertilizers and pesticides. Instead, they embrace sustainable techniques akin to permaculture and traditional Indigenous knowledge, leading to superior food production, enhanced public health, and a thriving "health tourism" industry. Wheaton utilizes HUSP as a thought experiment, inspiring innovation and pushing the boundaries of contemporary permaculture. He proposes a real-world project involving a 2,000-acre plot divided into smaller sections where practitioners of permaculture, biodynamic farming, and native plant cultivation can experiment and share knowledge, collectively striving to "rediscover" the principles of HUSP and advance sustainable agriculture. This project emphasizes the importance of collaboration and government non-interference to foster creative solutions for a future where food production harmonizes with nature.

The "freaky-cheap" aspect of WOFATI is fundamental to its appeal and accessibility. Inspired by Mike Oehler's pioneering work in earth-sheltered building, WOFATI prioritizes utilizing readily available natural materials, primarily wood and earth, minimizing reliance on expensive, manufactured products. By embracing the "freaky-cheap" ethos, WOFATI construction drastically reduces building costs, making sustainable living a more attainable reality. The emphasis on "soil on wood" construction eliminates the need for a traditional concrete foundation, further reducing expenses. This approach also facilitates rapid building times, as demonstrated by the construction of WOFATI structures at Wheaton Labs, such as Allerton Abbey. The use of recycled or salvaged materials, whenever possible, further contributes to the affordability of WOFATI buildings. By minimizing material costs and construction time, WOFATI empowers individuals to create sustainable and comfortable dwellings without incurring significant financial burdens.

A berm shed, as detailed in the sources, is an innovative and sustainable approach to building storage structures. It seamlessly integrates with the landscape, offering both aesthetic and functional benefits. Constructed using natural building techniques and readily available materials like logs and earth, a berm shed minimizes both environmental impact and construction costs. Its defining feature is the sloping roof covered with soil, forming a natural berm that provides excellent insulation and temperature regulation. The construction often employs round wood timber framing techniques, utilizing logs instead of dimensional lumber, which further enhances its sustainability and rustic appeal. Earthworks, carefully shaping the land to create the berm and ensure proper drainage, play a crucial role in its construction. The berm shed aligns perfectly with permaculture principles, serving as a visual and sound barrier, increasing privacy, and potentially even creating a microclimate beneficial for plant growth around the structure. This unique design, combining natural materials and earth-sheltering principles, offers a durable, cost-effective, and visually appealing storage solution that blends harmoniously with its surroundings.