Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
Dehydrating food with electricity can cost hundreds of dollars, plus heat your house when you don't want heat. A solar dehydrator not only runs for free, but is arguably the most efficient use of solar power. Solar dehydrators can be made from different recycled materials: old refrigerators, reclamed lumber, sheet glass and miscellaneous hardware.
The berm shed is more than just a simple storage structure; its construction incorporates advanced techniques that prioritize sustainability, durability, and integration with the natural environment. Earthworks play a crucial role, as careful shaping of the landscape is required to create the berm that covers a portion of the shed's sloping roof. This berm acts as a natural insulator and thermal mass, helping to regulate temperature inside the structure. The "attic" cell design, as discussed in source, involves a specific configuration at the termination ends of the berm shed, further enhancing its thermal efficiency. Round wood timber framing, a technique using logs instead of dimensional lumber, is often employed, lending structural strength and a rustic aesthetic. A key consideration is the long-term durability of the wood in contact with soil. Source emphasizes the importance of peeling the bark from posts before burial to reduce the probability of rot, highlighting the evolution of construction techniques for increased longevity. Additionally, using gravel in post holes, as described in source, helps with drainage and further protects the wood from moisture. These advanced concepts, when combined, result in a berm shed that is not only functional and visually appealing but also a testament to sustainable building practices deeply rooted in permaculture principles.
The lorena is an innovative cooktop design specifically for rocket stoves, aimed at enhancing heat transfer and overall cooking efficiency. It functions by incorporating a metal plate featuring a central hole positioned directly above the rocket stove's burn chamber. This central hole allows for direct heat application to large pots, ensuring rapid heating. Furthermore, the metal plate itself serves as an additional cooking surface, offering versatility for various cooking tasks. The lorena's design seeks to maximize the utilization of heat generated by the rocket stove, making it an energy-efficient cooking solution. Proposed implementations of the lorena often include integration into an outdoor kitchen setting, enhancing its practicality. The sources mention the lorena as an example of the continuous innovation and improvement within the realm of rocket stove technology.
WOFATI, which stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, represents a sustainable building solution that merges affordability and energy efficiency. Developed by Paul Wheaton, WOFATI draws inspiration from Mike Oehler's earth-sheltered designs, enhancing them with cost-saving strategies and a focus on harmonizing with the surrounding environment. This innovative approach prioritizes using locally sourced natural materials like wood and earth, thereby minimizing reliance on manufactured products and lessening the building's ecological impact. The concept of Annualized Thermal Inertia is central to WOFATI design, harnessing the surrounding earth as a thermal mass to regulate temperature fluctuations throughout the year. This natural heating and cooling system stores summer heat for winter warmth and retains winter's coolness to moderate summer temperatures, significantly reducing energy consumption. WOFATI buildings typically feature large windows strategically placed on the uphill side to maximize passive solar gain, further enhancing energy efficiency. As the name suggests, WOFATI structures are ideally situated on or near a woodland, emphasizing a symbiotic relationship with nature. Examples of WOFATI buildings, including Allerton Abbey and Wofati 0.8, can be found at Wheaton Labs in Montana
The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.