Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

One Mason bee can pollinate 200 times more flowers than one honey bee. Unlike honey bees, Mason bees are native to North America.

The willow feeder system, developed by permaculture expert Paul Wheaton, offers a "freaky-cheap" and sustainable alternative to conventional septic systems and sewage treatment plants. This system employs a unique method of managing human waste, transforming it into a nutrient-rich fertilizer known as "willow candy." Unlike composting toilets, which rely on decomposition, willow feeders utilize sealed garbage cans to create a dry environment that mummifies the waste, effectively eliminating pathogens while conserving valuable carbon and nitrogen. A small amount of sawdust is added to each can, primarily for aesthetics. After aging for two years in these sealed containers, the resulting pathogen-free "willow candy" is ready to be applied as fertilizer. However, not all plants can handle the high nutrient content of this unique fertilizer. "Poop beasts", such as willow, cottonwood, poplar, and bamboo trees, thrive on "willow candy" and readily absorb its nutrients. The willow feeder system exemplifies permaculture principles by turning human waste into a valuable resource, fostering sustainable gardening practices and minimizing environmental impact. Paul Wheaton, a prominent figure in the permaculture community, has implemented the willow feeder system at his property, Wheaton Labs, and actively promotes it through his online platforms, including permies.com. He often refers to waste as a "feed" for another system, encouraging a shift in perspective towards a more holistic view of resource management.

The willow feeder system, a "freaky-cheap" and sustainable approach to human waste management, was developed by permaculture expert Paul Wheaton as an alternative to conventional septic systems and sewage treatment plants. The system emphasizes a closed-loop cycle, transforming human waste, or "poop", into valuable fertilizer, termed "willow candy". Unlike composting toilets, willow feeders utilize a dry environment created within sealed garbage cans to mummify the waste, preventing composting and the potential spread of pathogens. A small amount of sawdust is added to each can, primarily for aesthetic purposes. This dry process also preserves valuable carbon and nitrogen, which are often lost to the atmosphere during hot composting. After two years of aging, the pathogen-free "willow candy" can be safely applied as fertilizer to "poop beasts" — trees like willow, cottonwood, poplar, and bamboo — which can handle the high nutrient content without being harmed. This system turns human waste into a valuable resource, promoting sustainable gardening practices.

The willow feeder system is a permaculture solution for managing human waste, developed by Paul Wheaton, that prioritizes safety, sustainability, and nutrient cycling. It is designed to be a "freaky-cheap" alternative to conventional septic systems and sewage treatment plants, utilizing readily available materials like garbage cans and sawdust. The system focuses on mummifying human waste in a dry environment within sealed garbage cans to prevent composting and the escape of pathogens. This dry environment also stops the loss of valuable carbon and nitrogen to the atmosphere, which is a common issue with hot composting. After two years of aging in the sealed cans, the resulting "willow candy" is pathogen-free and can be safely applied as fertilizer. While this nutrient-rich material could be used on any garden, it is best suited for "poop beasts" like willow, cottonwood, poplar, and bamboo, which can readily absorb the high nutrient content without harm. This system promotes a closed-loop approach, turning what is often considered waste into a valuable resource for growing beneficial plants.

The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.