Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, represents an innovative approach to sustainable building, coined by permaculture expert Paul Wheaton. This building technique combines the affordability and simplicity of Mike Oehler’s earth-sheltered designs with Wheaton's focus on cost reduction and integration with the natural environment. WOFATI structures prioritize the use of readily available, natural materials, such as wood and earth, minimizing reliance on manufactured products and reducing the building's environmental footprint. Annualized Thermal Inertia, a key principle of WOFATI, utilizes the surrounding earth as a thermal mass, storing heat in the summer to warm the building during winter and retaining cool temperatures from winter to moderate summer heat, thereby minimizing energy consumption for heating and cooling. WOFATI designs typically feature large windows on the uphill side to maximize passive solar gain, further reducing energy needs. WOFATIs are intended to be situated on or near a woodland, embracing the concept of harmonious integration with nature. Notable examples of WOFATI structures, including Allerton Abbey and Wofati 0.8, can be found at Wheaton Labs in Montana.

A dry outhouse, a simple and sustainable alternative to conventional flush toilets and septic systems, is frequently discussed within permaculture circles as a means of minimizing environmental impact and maximizing resource utilization. This type of outhouse is characterized by a pit dug into the ground, strategically located on a higher elevation point to encourage water runoff and maintain dryness. Key design elements for a successful dry outhouse include a "no pee" policy, the use of ample sawdust for odor control and composting, and urine diversion mechanisms, particularly important for accommodating female anatomy. While concerns about groundwater contamination exist, proper placement, construction, and the incorporation of heavy-feeding trees or plants like willows in a "tree bog" system can mitigate these risks. Furthermore, the integration of a urine separator can significantly reduce the volume and toxicity of waste, facilitating easier composting and nutrient recycling. The dry outhouse, particularly when combined with urine diversion and careful management, offers a cost-effective and environmentally sound approach to sanitation, aligning with permaculture principles of resource conservation and closed-loop systems.

Hugelkultur, is an advanced permaculture technique that utilizes decomposing wood to create self-sustaining raised garden beds. Hugelkultur beds can be built in various shapes and sizes, using a variety of wood materials, from twigs and branches to logs and even whole trees. The wood, buried under a layer of soil, acts "like a sponge to hold water," creating "parking spaces for water and nutrients," and reducing the need for irrigation. The decomposing wood attracts beneficial microorganisms and releases nutrients, resulting in a rich "soil on wood" environment that reduces or eliminates the need for fertilizers. Over time, the wood shrinks, creating air pockets, making hugelkultur beds "self-tilling". The decomposition process also slightly warms the soil in the first few years, extending the growing season. This technique, which works in diverse climates, allows gardeners to harness natural processes to create thriving, self-sufficient garden ecosystems, embodying permaculture principles

One Mason bee can pollinate 200 times more flowers than one honey bee. Unlike honey bees, Mason bees are native to North America.

The construction of a berm shed, a sustainable and aesthetically pleasing storage solution, involves a unique process that utilizes natural building techniques and earth-sheltering principles. First, the building site is prepared using earthworks, shaping the surrounding land to create a berm, which is a raised bank of soil that will eventually cover a portion of the shed's sloping roof. Round wood timber framing is a common technique employed in berm shed construction, utilizing logs sourced from the property instead of commercially produced dimensional lumber. These logs are carefully selected and placed to form the structural framework of the shed, including the walls and roof supports. Once the timber frame is erected, a moisture barrier, such as billboard material or layers of poly sheeting and newspaper, is installed over the logs to protect them from the elements. Finally, soil is carefully layered on top of the moisture barrier, creating the berm and providing insulation, thermal mass, and a natural aesthetic. The construction process prioritizes using natural, locally sourced materials and minimizing the use of energy-intensive and potentially toxic commercial products, aligning with permaculture principles of sustainability and self-sufficiency.