Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
Dry outhouses offer a sustainable alternative to conventional flush toilets, aligning with permaculture principles of resource conservation and waste reduction. A well-designed dry outhouse, strategically situated on an elevated point to encourage water runoff, utilizes a pit for waste collection. To mitigate odors and promote composting, sawdust is a crucial element. A "no pee" policy, though challenging for women due to anatomical differences, helps maintain a dry environment, crucial for minimizing pathogen survival and groundwater contamination. This "dry" approach allows the waste to essentially mummify over time, becoming poop-jerky after two years. This aged material, though technically safe for vegetable gardens, is ideally used to nourish "poop beast" trees like willows, poplars, or cottonwoods, as part of a "willow feeder system." For optimal functionality and user comfort, urine diversion mechanisms are essential, particularly in mixed-gender settings. This separation of urine, a valuable fertilizer, further reduces the volume and toxicity of the solid waste, facilitating easier handling and nutrient cycling. The dry outhouse, therefore, presents a low-cost, eco-friendly sanitation solution that embodies the essence of permaculture's closed-loop systems.
WOFATI, an innovative sustainable building technique coined by permaculture advocate Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. The design utilizes readily available natural materials like wood and earth to create a "soil on wood" structure that harmonizes with the surrounding woodland. The "freaky-cheap" construction methods pioneered by Mike Oehler and further developed by Wheaton significantly reduce building costs. WOFATI structures are characterized by a double layer of membrane, a "two-skin" system that encapsulates the earthen roof, ensuring dryness and longevity. The principle of Annualized Thermal Inertia is key, using the earth's mass to regulate temperature, providing passive heating in winter and cooling in summer. WOFATI houses feature large windows on the uphill side for optimal passive solar gain, while the downhill side typically boasts a large gable roof, also incorporating glazing for natural light penetration. Allerton Abbey, located at Wheaton Labs, serves as a prime example of a WOFATI house
he willow feeder system is a sustainable and "freaky-cheap" approach to human waste management developed by permaculture expert Paul Wheaton. This system utilizes a dry environment inside sealed garbage cans to mummify human waste, which prevents composting and the release of pathogens. The system is designed to be a safe and effective alternative to conventional septic systems and sewage treatment plants. A small amount of sawdust is added to each can, mainly for aesthetics. After two years, the resulting pathogen-free material, referred to as "willow candy," can be safely used as fertilizer for trees that can handle its high nutrient content, known as "poop beasts." These trees include willow, cottonwood, poplar, and bamboo. The willow feeder system embodies permaculture principles by transforming human waste into a valuable resource for growing beneficial plants while minimizing environmental impact.
"HUSP," an acronym for "Horticulture of the United States of Pocahontas," is a term coined by Paul Wheaton to explore a fictional scenario where Native American agricultural practices, similar to permaculture, dominated the United States. This concept envisions an alternate history where Pocahontas, depicted as a brilliant strategist, prevents European colonization, leading to the establishment of the United States of Pocahontas (USP). Within this fictional nation, agricultural practices prioritize respect for the Earth, rejecting destructive methods like plowing and the use of petroleum-based fertilizers and pesticides. HUSP speculates on the potential for superior agricultural output and societal well-being through these nature-centric methods. Wheaton uses the HUSP concept to inspire innovation and advancement within the existing permaculture community, aiming to accelerate progress towards more sustainable and effective food production systems. He proposes a collaborative project involving practitioners of various agricultural approaches, including permaculture, biodynamic, and native plant specialists, working on a 2000-acre plot divided into smaller chunks. This project aims to foster knowledge exchange and accelerate the development of HUSP principles in the real world.
WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique