Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur is a raised garden bed building technique where wood is buried ("soil on wood") under soil. Hugelkultur, which means "hill culture" in German, can be implemented on a small scale in backyards or on a large scale, as demonstrated by Sepp Holzer, a renowned permaculture practitioner who uses hugelkultur in his terraced gardens. This technique involves layering logs, branches, twigs, and even whole trees, creating a foundation for the bed. This buried wood becomes "a sponge to hold water", reducing or eliminating the need for irrigation. As the wood decomposes, it attracts beneficial microorganisms and creates air pockets, leading to nutrient-rich, fertile soil. Hugelkultur helps gardeners "grow a typical garden without irrigation or fertilization". This technique can be used to grow garden plants like "rhubarb", "potatoes", and more. Hugelkultur is an example of permaculture design, which emphasizes sustainability, self-sufficiency, and working with natural systems

One Mason bee can pollinate 200 times more flowers than one honey bee. Unlike honey bees, Mason bees are native to North America.

Hugelkultur, is an advanced permaculture technique that utilizes decomposing wood to create self-sustaining raised garden beds. Hugelkultur beds can be built in various shapes and sizes, using a variety of wood materials, from twigs and branches to logs and even whole trees. The wood, buried under a layer of soil, acts "like a sponge to hold water," creating "parking spaces for water and nutrients," and reducing the need for irrigation. The decomposing wood attracts beneficial microorganisms and releases nutrients, resulting in a rich "soil on wood" environment that reduces or eliminates the need for fertilizers. Over time, the wood shrinks, creating air pockets, making hugelkultur beds "self-tilling". The decomposition process also slightly warms the soil in the first few years, extending the growing season. This technique, which works in diverse climates, allows gardeners to harness natural processes to create thriving, self-sufficient garden ecosystems, embodying permaculture principles

WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique