Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
One Mason bee can pollinate 200 times more flowers than one honey bee. Unlike honey bees, Mason bees are native to North America.
Dry outhouses, frequently discussed in permaculture, provide a sustainable sanitation solution that prioritizes resource conservation and waste reduction, but their usability and effectiveness rely on careful design and management. While simple in concept, dry outhouses require specific considerations to optimize user experience and ensure proper waste handling. Strategic placement on elevated ground promotes natural drainage and helps maintain a dry pit, essential for reducing odors and pathogen survival. However, achieving a truly "no pee" environment, while ideal for minimizing volume and toxicity, can be challenging, especially for women. Urine diversion mechanisms are crucial for separating urine, a valuable fertilizer, and facilitating a drier composting process for the solid waste. The addition of sawdust further aids in odor control and composting, while proper ventilation, often achieved through a "breather pipe" in a willow feeder system, ensures aerobic decomposition and minimizes smells. User comfort can be enhanced with features like comfortable seating, adequate lighting, and clear instructions on proper usage, including sawdust application and urine diversion practices. Effectiveness in terms of long-term sustainability hinges on proper waste management. The "mummified" waste, or poop-jerky, after two years of aging, is ideally applied to "poop beast" trees like willows, poplars, or cottonwoods, completing the nutrient cycle. By addressing usability and effectiveness through thoughtful design and management, dry outhouses can become a viable and environmentally sound sanitation solution, embodying the principles of permaculture.
Hugelkultur, is an advanced permaculture technique for creating self-sufficient, raised garden beds by burying wood beneath the soil. Hugelkultur beds can be built in various shapes and sizes, from small backyard gardens to large farm-scale operations. This technique utilizes a variety of wood, from small twigs to whole trees, which decompose over time to create a beneficial environment for plant growth. The wood acts as a sponge, holding water and reducing or eliminating the need for irrigation. As the wood decomposes, it attracts beneficial microorganisms and releases nutrients, creating a fertile "soil on wood" environment that requires minimal fertilization. Hugelkultur is an environmentally sustainable technique that utilizes organic materials that would otherwise be discarded, embodying the permaculture principles of working with nature and reducing waste.. This technique is also applicable to diverse climates and has been proven effective even in desert environments
Hugelkultur is a raised garden bed building technique where wood is buried ("soil on wood") under soil. Hugelkultur, which means "hill culture" in German, can be implemented on a small scale in backyards or on a large scale, as demonstrated by Sepp Holzer, a renowned permaculture practitioner who uses hugelkultur in his terraced gardens. This technique involves layering logs, branches, twigs, and even whole trees, creating a foundation for the bed. This buried wood becomes "a sponge to hold water", reducing or eliminating the need for irrigation. As the wood decomposes, it attracts beneficial microorganisms and creates air pockets, leading to nutrient-rich, fertile soil. Hugelkultur helps gardeners "grow a typical garden without irrigation or fertilization". This technique can be used to grow garden plants like "rhubarb", "potatoes", and more. Hugelkultur is an example of permaculture design, which emphasizes sustainability, self-sufficiency, and working with natural systems