Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.

The berm shed, a hallmark of permaculture design, is an eco-friendly, earth-sheltered structure renowned for its unique construction techniques. Earthworks are fundamental to its creation, as the surrounding landscape is carefully shaped to form the berm that will encase a portion of the shed's sloping roof. This berm serves a dual purpose, acting as both a natural insulator and a source of thermal mass, effectively regulating the internal temperature. The structural framework of the berm shed is often built using round wood timber framing, a technique that prioritizes using logs instead of conventional dimensional lumber, further enhancing its sustainable appeal. However, the longevity of these logs, especially when in contact with soil, is a crucial consideration. The sources recommend peeling the bark from posts before burying them, a technique born from experience and aimed at minimizing the risk of rot. Another technique for ensuring the durability of the structure involves incorporating gravel into the post holes. The gravel facilitates drainage, preventing water from pooling around the base of the posts and contributing to premature decay. These carefully considered details, combined with the innovative "attic" cell design at the termination ends of the shed, as described in source, showcase a commitment to sustainable building practices that go beyond mere functionality, exemplifying the core principles of permaculture.

Dry outhouses, frequently discussed in permaculture, provide a sustainable sanitation solution that prioritizes resource conservation and waste reduction, but their usability and effectiveness rely on careful design and management. While simple in concept, dry outhouses require specific considerations to optimize user experience and ensure proper waste handling. Strategic placement on elevated ground promotes natural drainage and helps maintain a dry pit, essential for reducing odors and pathogen survival. However, achieving a truly "no pee" environment, while ideal for minimizing volume and toxicity, can be challenging, especially for women. Urine diversion mechanisms are crucial for separating urine, a valuable fertilizer, and facilitating a drier composting process for the solid waste. The addition of sawdust further aids in odor control and composting, while proper ventilation, often achieved through a "breather pipe" in a willow feeder system, ensures aerobic decomposition and minimizes smells. User comfort can be enhanced with features like comfortable seating, adequate lighting, and clear instructions on proper usage, including sawdust application and urine diversion practices. Effectiveness in terms of long-term sustainability hinges on proper waste management. The "mummified" waste, or poop-jerky, after two years of aging, is ideally applied to "poop beast" trees like willows, poplars, or cottonwoods, completing the nutrient cycle. By addressing usability and effectiveness through thoughtful design and management, dry outhouses can become a viable and environmentally sound sanitation solution, embodying the principles of permaculture.