Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
"Pooless," a popular concept within the permaculture community, involves eliminating commercial shampoos and soaps for a more natural approach to personal hygiene. While the initial transition can be challenging, user feedback reveals a range of positive outcomes. Many individuals, like the user in source, report that after an adjustment period, their hair reaches a natural balance, becoming less oily and requiring less frequent washing. Some, like the user in source, note improvements in hair texture, with increased body and curl, despite occasional waxiness or static. The user in source highlights the importance of the vinegar rinse after a baking soda wash to smooth the hair cuticle and prevent tangles. Source describes the psychological shift required to embrace the absence of the "slimy/silky" feeling associated with commercial conditioners. Furthermore, source suggests a potential link between reduced scrub-downs and fewer allergic reactions and illnesses, possibly due to the preservation of beneficial probiotics on the skin. Overall, user feedback suggests that "poolessness," though requiring an adjustment period, can lead to healthier hair and skin, aligning with permaculture principles of minimizing chemical use and embracing natural processes.
Dry outhouses offer a multitude of positive environmental impacts, aligning perfectly with the core principles of permaculture and sustainable living. Unlike conventional flush toilets that waste gallons of clean water and contribute to pollution, dry outhouses conserve water and prevent contamination. The "no pee" policy, combined with effective urine diversion systems, further minimizes the volume of waste and potential for groundwater pollution. The use of sawdust not only controls odors but also facilitates a dry composting process, essentially mummifying the waste over time and reducing it to poop-jerky after two years. This aged material is then safely used as a nutrient-rich fertilizer for "poop beast" trees like willows, poplars, and cottonwoods. This willow feeder system not only prevents harmful waste from entering the environment but also actively enriches the soil, promoting the growth of beneficial plants and trees. By avoiding chemical fertilizers and promoting natural decomposition, dry outhouses contribute to a healthier ecosystem, aligning with the HUSP (Horticulture of the United States of Pocahontas) concept that emphasizes sustainable land management practices. Furthermore, the absence of a water-intensive septic system eliminates the risk of leaks and contamination, safeguarding groundwater and promoting ecological balance. Therefore, dry outhouses offer a compelling example of how simple, well-designed systems can have a profound positive impact on the environment.
SKIP, which stands for Skills to Inherit Property, is a permaculture-based program designed to connect aspiring homesteaders with aging landowners seeking successors for their properties. The program consists of over a thousand practical projects, referred to as "Badge Bits" (BBs), encompassing various aspects of sustainable living, such as gardening, natural building, animal care, and food preservation. Participants, known as "Skippers," complete these BBs, documenting their progress with pictures and videos to demonstrate their skills and dedication. As Skippers gain experience, they progress through levels of certification, starting with PEP1 (Permaculture Experience according to Paul) and culminating in PEP4, representing a significant level of expertise. "Otis," a fictional character in the SKIP program, represents the numerous landowners seeking worthy individuals to inherit their properties. The program aims to create a bridge between these Otises and Skippers, offering a pathway for Skippers to "skip the rat race" and acquire land while providing Otises with peace of mind knowing their homesteads will be in capable hands. SKIP emphasizes practical skills and real-world experience, fostering a sense of accomplishment and self-sufficiency among participants.
WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique
Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.