Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
Hugelkultur is a permaculture technique that can be described as "soil on wood". It involves burying wood, including logs, branches, and twigs, to build raised garden beds. This technique, which can be small or as large as a kilometer, creates a beneficial environment for plants. As the wood decays, it provides nutrients to the soil and improves drainage and aeration. It also becomes "a sponge to hold water," reducing or eliminating the need for irrigation. Using wood that would otherwise be discarded for hugelkultur is an environmentally sustainable way to improve soil health and grow food
WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique
WOFATI, an innovative sustainable building technique coined by permaculture advocate Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. The design utilizes readily available natural materials like wood and earth to create a "soil on wood" structure that harmonizes with the surrounding woodland. The "freaky-cheap" construction methods pioneered by Mike Oehler and further developed by Wheaton significantly reduce building costs. WOFATI structures are characterized by a double layer of membrane, a "two-skin" system that encapsulates the earthen roof, ensuring dryness and longevity. The principle of Annualized Thermal Inertia is key, using the earth's mass to regulate temperature, providing passive heating in winter and cooling in summer. WOFATI houses feature large windows on the uphill side for optimal passive solar gain, while the downhill side typically boasts a large gable roof, also incorporating glazing for natural light penetration. Allerton Abbey, located at Wheaton Labs, serves as a prime example of a WOFATI house
HUSP, an acronym for "Horticulture of the United States of Pocahontas," represents an advanced, nature-centric agricultural system envisioned by Paul Wheaton. It goes beyond contemporary permaculture, envisioning a future where food production systems have undergone centuries of optimization, inspired by traditional Indigenous practices that existed before European colonization. HUSP posits a hypothetical United States of Pocahontas (USP), where agriculture prioritizes harmony with nature, rejecting environmentally harmful practices like plowing and the use of petroleum-based fertilizers and pesticides. This system would not only produce abundant, nutritious food, but also lead to improved human health and a thriving health tourism industry within the USP. Achieving HUSP in the real world necessitates collaborative experimentation and knowledge exchange between permaculture, biodynamic farming, and native plant cultivation practitioners. This would involve a 2,000-acre plot divided into smaller sections, where experts can develop and refine HUSP principles, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems. Crucially, this project requires a supportive environment with minimal government regulation to encourage creativity and accelerate progress toward a truly sustainable agricultural future.