Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The distinction between "woodland" and "forest" is subtle but significant within the context of permaculture, particularly in Paul Wheaton's approach to Wofati design. While "forest" implies a focus on traditional forestry practices, often associated with monoculture and resource extraction, "woodland" evokes a more holistic and interconnected ecosystem. Woodland management, as exemplified in Ben Law's books The Woodland Way and The Woodland Year, emphasizes sustainable practices that prioritize biodiversity, ecological balance, and human integration with the natural world. A woodland is seen as a space where humans are active participants, nurturing and benefiting from the ecosystem's abundance, similar to the Native American land management practices that inspire the HUSP (Horticulture of the United States of Pocahontas) concept. In contrast, a forest, within this framework, is often viewed as a resource to be exploited, a perspective that aligns with the concerns raised about conifer monocultures and their detrimental impact on biodiversity and soil health. Therefore, "woodland," as used in the context of Wofati, signifies a conscious shift towards a more harmonious and sustainable relationship between humans and the natural world. This distinction underscores the importance of terminology in shaping our understanding and approach to land management within the permaculture movement.
WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.
A dry outhouse, a simple and sustainable alternative to conventional flush toilets and septic systems, is frequently discussed within permaculture circles as a means of minimizing environmental impact and maximizing resource utilization. This type of outhouse is characterized by a pit dug into the ground, strategically located on a higher elevation point to encourage water runoff and maintain dryness. Key design elements for a successful dry outhouse include a "no pee" policy, the use of ample sawdust for odor control and composting, and urine diversion mechanisms, particularly important for accommodating female anatomy. While concerns about groundwater contamination exist, proper placement, construction, and the incorporation of heavy-feeding trees or plants like willows in a "tree bog" system can mitigate these risks. Furthermore, the integration of a urine separator can significantly reduce the volume and toxicity of waste, facilitating easier composting and nutrient recycling. The dry outhouse, particularly when combined with urine diversion and careful management, offers a cost-effective and environmentally sound approach to sanitation, aligning with permaculture principles of resource conservation and closed-loop systems.
WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, is an innovative approach to sustainable building developed by permaculture expert Paul Wheaton. WOFATI structures are designed to be eco-friendly, utilizing locally sourced natural materials, primarily wood and earth. These structures are intended to be located on or near woodlands, promoting a harmonious integration with the natural surroundings. Annualized Thermal Inertia, a key element of WOFATI design, harnesses the thermal mass of the surrounding earth to provide passive heating in winter and cooling in summer, thereby minimizing the need for artificial temperature regulation. WOFATI structures are inspired by the work of Mike Oehler, a pioneer in earth-sheltered building known for his simple, "freaky-cheap" designs, which Wheaton has adapted and refined to further reduce construction costs. WOFATI buildings are typically characterized by a large gable roof on the downhill side, with at least 35% of the uphill wall featuring glass or other light-transmitting materials to maximize passive solar gain. Allerton Abbey, the first WOFATI structure, and Wofati 0.8 are both located at Wheaton Labs in Montana and serve as prominent examples of this unique building style.
"HUSP," an acronym for "Horticulture of the United States of Pocahontas," is a term coined by Paul Wheaton to explore a fictional scenario where Native American agricultural practices, similar to permaculture, dominated the United States. This concept envisions an alternate history where Pocahontas, depicted as a brilliant strategist, prevents European colonization, leading to the establishment of the United States of Pocahontas (USP). Within this fictional nation, agricultural practices prioritize respect for the Earth, rejecting destructive methods like plowing and the use of petroleum-based fertilizers and pesticides. HUSP speculates on the potential for superior agricultural output and societal well-being through these nature-centric methods. Wheaton uses the HUSP concept to inspire innovation and advancement within the existing permaculture community, aiming to accelerate progress towards more sustainable and effective food production systems. He proposes a collaborative project involving practitioners of various agricultural approaches, including permaculture, biodynamic, and native plant specialists, working on a 2000-acre plot divided into smaller chunks. This project aims to foster knowledge exchange and accelerate the development of HUSP principles in the real world.