Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

HUSP, an acronym for "Horticulture of the United States of Pocahontas," represents an advanced, nature-centric agricultural system envisioned by Paul Wheaton. It goes beyond contemporary permaculture, envisioning a future where food production systems have undergone centuries of optimization, inspired by traditional Indigenous practices that existed before European colonization. HUSP posits a hypothetical United States of Pocahontas (USP), where agriculture prioritizes harmony with nature, rejecting environmentally harmful practices like plowing and the use of petroleum-based fertilizers and pesticides. This system would not only produce abundant, nutritious food, but also lead to improved human health and a thriving health tourism industry within the USP. Achieving HUSP in the real world necessitates collaborative experimentation and knowledge exchange between permaculture, biodynamic farming, and native plant cultivation practitioners. This would involve a 2,000-acre plot divided into smaller sections, where experts can develop and refine HUSP principles, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems. Crucially, this project requires a supportive environment with minimal government regulation to encourage creativity and accelerate progress toward a truly sustainable agricultural future.

A berm shed is an innovative, earth-sheltered structure designed for storage, blending seamlessly into the landscape while offering practical benefits. This natural building technique utilizes readily available materials like logs and earth, minimizing environmental impact and cost. The berm shed's design, as described in the sources, features a sloping roof covered with soil, creating a natural berm that provides insulation and helps regulate temperature. The round wood timber framing techniques used in its construction, relying on logs rather than dimensional lumber, further enhance its sustainability and aesthetic appeal. The berm shed is often incorporated into permaculture designs, serving as a visual and sound barrier, enhancing privacy, and creating a microclimate for plant growth. Its construction involves earthworks, carefully shaping the surrounding landscape to create the berm and ensure proper drainage. The berm shed's unique design, combining natural materials and earth-sheltering principles, offers a durable, cost-effective, and aesthetically pleasing storage solution that integrates harmoniously with the surrounding environment.

WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique

WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.

The "lorena" is a specialized cooktop design for rocket stoves, incorporating features that enhance heat transfer and cooking efficiency. As described in the sources, a lorena typically consists of a metal plate with a central hole, positioned directly above the rocket stove's burn chamber. The hole allows for direct heat transfer to large pots, facilitating rapid heating. The surrounding metal plate also acts as a cooking surface, similar to the glass cooktop found at Allerton Abbey, one of the WOFATI structures at Wheaton Labs. This dual functionality makes the lorena a versatile cooking solution for both large-scale and smaller cooking tasks. The design emphasizes maximizing heat utilization from the rocket stove, making it an energy-efficient option. Discussions in the sources suggest integrating the lorena into an outdoor kitchen setup, further enhancing its practicality and convenience. The lorena represents an innovative application of rocket stove technology, designed to optimize heat transfer and improve cooking performance.