Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur, meaning "hill culture" in German, is a sustainable gardening method that involves creating raised garden beds by burying wood under soil. This technique, described as "soil on wood," uses logs, branches, twigs, and even whole trees, which decompose and act as "a sponge to hold water". The decomposition process attracts beneficial microorganisms, creates air pockets, and releases nutrients, resulting in fertile soil that reduces or eliminates the need for irrigation and fertilization. Hugelkultur is a versatile technique that can be implemented on a small scale or on a large scale, even spanning nearly a kilometer. By utilizing wood that would otherwise be discarded, hugelkultur promotes environmental sustainability and aligns with permaculture principles, allowing gardeners to "grow a typical garden without irrigation or fertilization"

A berm shed, as detailed in the sources, is an innovative and sustainable approach to building storage structures. It seamlessly integrates with the landscape, offering both aesthetic and functional benefits. Constructed using natural building techniques and readily available materials like logs and earth, a berm shed minimizes both environmental impact and construction costs. Its defining feature is the sloping roof covered with soil, forming a natural berm that provides excellent insulation and temperature regulation. The construction often employs round wood timber framing techniques, utilizing logs instead of dimensional lumber, which further enhances its sustainability and rustic appeal. Earthworks, carefully shaping the land to create the berm and ensure proper drainage, play a crucial role in its construction. The berm shed aligns perfectly with permaculture principles, serving as a visual and sound barrier, increasing privacy, and potentially even creating a microclimate beneficial for plant growth around the structure. This unique design, combining natural materials and earth-sheltering principles, offers a durable, cost-effective, and visually appealing storage solution that blends harmoniously with its surroundings.

Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.

Made of ancient diatom skeletons, diatomaceous earth is edible to mammals but deadly to insects. De scratches through a bug's waxy exoskeleton coating turning their innards to teeny tiny bug jerky.