Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur, is an advanced permaculture technique for creating self-sustaining raised garden beds filled with decomposing wood. The technique involves burying a variety of wood materials, including logs, branches, twigs, and even whole trees, under layers of soil, creating a complex and dynamic environment for plant growth. As the wood decomposes, it acts as "a sponge to hold water," reducing the need for irrigation. This decomposition also generates heat, which can extend the growing season, particularly in cooler climates. The shrinking wood creates air pockets, making the beds "self-tilling" and promoting excellent aeration for plant roots. These "parking spaces for water and nutrients," as described by Paul Wheaton, enhance soil fertility, attract beneficial microorganisms, and release nutrients, reducing or eliminating the need for fertilizers. Hugelkultur beds are remarkably adaptable and can be built in various shapes and sizes, as exemplified by Sepp Holzer's large-scale project in Dayton, Montana, which features nearly a kilometer of hugelkultur beds.

WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.

The "freaky-cheap" aspect of WOFATI is fundamental to its appeal and accessibility. Inspired by Mike Oehler's pioneering work in earth-sheltered building, WOFATI prioritizes utilizing readily available natural materials, primarily wood and earth, minimizing reliance on expensive, manufactured products. By embracing the "freaky-cheap" ethos, WOFATI construction drastically reduces building costs, making sustainable living a more attainable reality. The emphasis on "soil on wood" construction eliminates the need for a traditional concrete foundation, further reducing expenses. This approach also facilitates rapid building times, as demonstrated by the construction of WOFATI structures at Wheaton Labs, such as Allerton Abbey. The use of recycled or salvaged materials, whenever possible, further contributes to the affordability of WOFATI buildings. By minimizing material costs and construction time, WOFATI empowers individuals to create sustainable and comfortable dwellings without incurring significant financial burdens.

The willow feeder system is a permaculture solution for managing human waste, developed by Paul Wheaton, that prioritizes safety, sustainability, and nutrient cycling. It is designed to be a "freaky-cheap" alternative to conventional septic systems and sewage treatment plants, utilizing readily available materials like garbage cans and sawdust. The system focuses on mummifying human waste in a dry environment within sealed garbage cans to prevent composting and the escape of pathogens. This dry environment also stops the loss of valuable carbon and nitrogen to the atmosphere, which is a common issue with hot composting. After two years of aging in the sealed cans, the resulting "willow candy" is pathogen-free and can be safely applied as fertilizer. While this nutrient-rich material could be used on any garden, it is best suited for "poop beasts" like willow, cottonwood, poplar, and bamboo, which can readily absorb the high nutrient content without harm. This system promotes a closed-loop approach, turning what is often considered waste into a valuable resource for growing beneficial plants.

WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique