Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
Cast iron cookware can last hundreds of years while some other cookware needs to be replaced every 6 months. Cast iron is the true non-stick pan. When the surface is coated with a dab of oil or fat of your choice, eggs will slide freely.
Hugelkultur, is a permaculture technique that utilizes buried wood to create raised garden beds. This method can be implemented on a small scale in backyards or on a large scale, covering areas up to a kilometer in length. Hugelkultur beds are constructed by layering logs, branches, twigs, and even whole trees and covering them with soil. Over time, the decomposing wood acts "like a sponge to hold water," reducing the need for irrigation and attracting beneficial microorganisms. This decomposition also creates "parking spaces" for water and nutrients, improving soil fertility and aeration. Using hugelkultur reduces or eliminates the need for fertilization, as the rotting wood provides nutrients. The self-tilling nature of hugelkultur is enhanced as the wood shrinks, creating air pockets over time.
WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, is an innovative approach to sustainable building developed by permaculture expert Paul Wheaton. WOFATI structures are designed to be eco-friendly, utilizing locally sourced natural materials, primarily wood and earth. These structures are intended to be located on or near woodlands, promoting a harmonious integration with the natural surroundings. Annualized Thermal Inertia, a key element of WOFATI design, harnesses the thermal mass of the surrounding earth to provide passive heating in winter and cooling in summer, thereby minimizing the need for artificial temperature regulation. WOFATI structures are inspired by the work of Mike Oehler, a pioneer in earth-sheltered building known for his simple, "freaky-cheap" designs, which Wheaton has adapted and refined to further reduce construction costs. WOFATI buildings are typically characterized by a large gable roof on the downhill side, with at least 35% of the uphill wall featuring glass or other light-transmitting materials to maximize passive solar gain. Allerton Abbey, the first WOFATI structure, and Wofati 0.8 are both located at Wheaton Labs in Montana and serve as prominent examples of this unique building style.
The willow feeder system, developed by permaculture expert Paul Wheaton, offers a "freaky-cheap" and sustainable alternative to conventional septic systems and sewage treatment plants. This system employs a unique method of managing human waste, transforming it into a nutrient-rich fertilizer known as "willow candy." Unlike composting toilets, which rely on decomposition, willow feeders utilize sealed garbage cans to create a dry environment that mummifies the waste, effectively eliminating pathogens while conserving valuable carbon and nitrogen. A small amount of sawdust is added to each can, primarily for aesthetics. After aging for two years in these sealed containers, the resulting pathogen-free "willow candy" is ready to be applied as fertilizer. However, not all plants can handle the high nutrient content of this unique fertilizer. "Poop beasts", such as willow, cottonwood, poplar, and bamboo trees, thrive on "willow candy" and readily absorb its nutrients. The willow feeder system exemplifies permaculture principles by turning human waste into a valuable resource, fostering sustainable gardening practices and minimizing environmental impact. Paul Wheaton, a prominent figure in the permaculture community, has implemented the willow feeder system at his property, Wheaton Labs, and actively promotes it through his online platforms, including permies.com. He often refers to waste as a "feed" for another system, encouraging a shift in perspective towards a more holistic view of resource management.
The berm shed is more than just a simple storage structure; its construction incorporates advanced techniques that prioritize sustainability, durability, and integration with the natural environment. Earthworks play a crucial role, as careful shaping of the landscape is required to create the berm that covers a portion of the shed's sloping roof. This berm acts as a natural insulator and thermal mass, helping to regulate temperature inside the structure. The "attic" cell design, as discussed in source, involves a specific configuration at the termination ends of the berm shed, further enhancing its thermal efficiency. Round wood timber framing, a technique using logs instead of dimensional lumber, is often employed, lending structural strength and a rustic aesthetic. A key consideration is the long-term durability of the wood in contact with soil. Source emphasizes the importance of peeling the bark from posts before burial to reduce the probability of rot, highlighting the evolution of construction techniques for increased longevity. Additionally, using gravel in post holes, as described in source, helps with drainage and further protects the wood from moisture. These advanced concepts, when combined, result in a berm shed that is not only functional and visually appealing but also a testament to sustainable building practices deeply rooted in permaculture principles.