Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur, is an advanced permaculture technique that utilizes decomposing wood to create self-sustaining raised garden beds. Hugelkultur beds can be built in various shapes and sizes, using a variety of wood materials, from twigs and branches to logs and even whole trees. The wood, buried under a layer of soil, acts "like a sponge to hold water," creating "parking spaces for water and nutrients," and reducing the need for irrigation. The decomposing wood attracts beneficial microorganisms and releases nutrients, resulting in a rich "soil on wood" environment that reduces or eliminates the need for fertilizers. Over time, the wood shrinks, creating air pockets, making hugelkultur beds "self-tilling". The decomposition process also slightly warms the soil in the first few years, extending the growing season. This technique, which works in diverse climates, allows gardeners to harness natural processes to create thriving, self-sufficient garden ecosystems, embodying permaculture principles

Hugelkultur, meaning "hill culture," is a sustainable permaculture gardening method that uses buried wood to create raised garden beds. This technique involves layering logs, branches, and other woody debris at the base of the bed and covering them with soil. As the wood decomposes, it acts as a sponge, retaining moisture, improving aeration and drainage, and releasing nutrients, reducing the need for watering and fertilizers. Hugelkultur beds are ideal for growing various plants, especially those that prefer well-drained soil. By harnessing the natural process of decomposition, hugelkultur promotes a thriving garden ecosystem and aligns with permaculture's goal of sustainable systems.

The willow feeder system, a "freaky-cheap" and sustainable approach to human waste management, was developed by permaculture expert Paul Wheaton as an alternative to conventional septic systems and sewage treatment plants. The system emphasizes a closed-loop cycle, transforming human waste, or "poop", into valuable fertilizer, termed "willow candy". Unlike composting toilets, willow feeders utilize a dry environment created within sealed garbage cans to mummify the waste, preventing composting and the potential spread of pathogens. A small amount of sawdust is added to each can, primarily for aesthetic purposes. This dry process also preserves valuable carbon and nitrogen, which are often lost to the atmosphere during hot composting. After two years of aging, the pathogen-free "willow candy" can be safely applied as fertilizer to "poop beasts" — trees like willow, cottonwood, poplar, and bamboo — which can handle the high nutrient content without being harmed. This system turns human waste into a valuable resource, promoting sustainable gardening practices.

WOFATI structures are characterized by a thoughtful design that prioritizes passive systems and natural, locally sourced materials. The "two-skin" system, composed of a double layer of polyethylene membrane, encapsulates the earthen roof, providing a durable and waterproof barrier. The lower layer hugs the structure, while the upper layer defines the thermal mass surrounding it, with at least eight inches of dirt between the layers and sixteen inches on top. WOFATI designs emphasize a harmonious integration with the surrounding woodland, incorporating the "soil on wood" building technique. This method eliminates the need for a conventional concrete foundation, making construction faster and more affordable. A distinctive feature of WOFATI houses is the large gable roof on the downhill side, often incorporating glazing to allow light penetration, while at least 35% of the uphill wall features windows for optimal passive solar gain. This strategic placement and sizing of windows is crucial for maximizing natural light and regulating internal temperature, contributing to the effectiveness of Annualized Thermal Inertia.

WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, represents an innovative approach to sustainable building, coined by permaculture expert Paul Wheaton. This building technique combines the affordability and simplicity of Mike Oehler’s earth-sheltered designs with Wheaton's focus on cost reduction and integration with the natural environment. WOFATI structures prioritize the use of readily available, natural materials, such as wood and earth, minimizing reliance on manufactured products and reducing the building's environmental footprint. Annualized Thermal Inertia, a key principle of WOFATI, utilizes the surrounding earth as a thermal mass, storing heat in the summer to warm the building during winter and retaining cool temperatures from winter to moderate summer heat, thereby minimizing energy consumption for heating and cooling. WOFATI designs typically feature large windows on the uphill side to maximize passive solar gain, further reducing energy needs. WOFATIs are intended to be situated on or near a woodland, embracing the concept of harmonious integration with nature. Notable examples of WOFATI structures, including Allerton Abbey and Wofati 0.8, can be found at Wheaton Labs in Montana.