Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
When discussing "woodland" versus "forest," the structural and management approaches differ significantly, particularly within a permaculture context. Forests, often managed for timber production, frequently involve monoculture planting and practices like clear-cutting, which can create what Sepp Holzer calls a "conifer desert." This leads to decreased biodiversity, depleted soil health, and disrupted ecological balance. "Woodland" management, as described by Ben Law, focuses on a more holistic, interconnected ecosystem. Woodland management prioritizes biodiversity, recognizing the interconnectedness of all lifeforms within the ecosystem. Active human participation is encouraged, mimicking the sustainable land management practices of Indigenous cultures, as exemplified by the HUSP (Horticulture of the United States of Pocahontas) concept. Woodlands are viewed as spaces where humans actively participate and nurture, promoting long-term health and resilience. This active management ensures the woodland provides not only timber but also food, medicine, and wildlife habitat. The selection of "woodland" in Wofati design reflects a conscious shift away from extractive forestry practices and toward a more sustainable and harmonious relationship with the natural world. In essence, the distinction between woodland and forest highlights the crucial role of human management in shaping the structure and health of these ecosystems, emphasizing the permaculture principle of responsible stewardship of natural resources.
Dry outhouses, frequently discussed in permaculture, provide a sustainable sanitation solution that prioritizes resource conservation and waste reduction, but their usability and effectiveness rely on careful design and management. While simple in concept, dry outhouses require specific considerations to optimize user experience and ensure proper waste handling. Strategic placement on elevated ground promotes natural drainage and helps maintain a dry pit, essential for reducing odors and pathogen survival. However, achieving a truly "no pee" environment, while ideal for minimizing volume and toxicity, can be challenging, especially for women. Urine diversion mechanisms are crucial for separating urine, a valuable fertilizer, and facilitating a drier composting process for the solid waste. The addition of sawdust further aids in odor control and composting, while proper ventilation, often achieved through a "breather pipe" in a willow feeder system, ensures aerobic decomposition and minimizes smells. User comfort can be enhanced with features like comfortable seating, adequate lighting, and clear instructions on proper usage, including sawdust application and urine diversion practices. Effectiveness in terms of long-term sustainability hinges on proper waste management. The "mummified" waste, or poop-jerky, after two years of aging, is ideally applied to "poop beast" trees like willows, poplars, or cottonwoods, completing the nutrient cycle. By addressing usability and effectiveness through thoughtful design and management, dry outhouses can become a viable and environmentally sound sanitation solution, embodying the principles of permaculture.
The willow feeder system is a permaculture solution for managing human waste, developed by Paul Wheaton, that prioritizes safety, sustainability, and nutrient cycling. It is designed to be a "freaky-cheap" alternative to conventional septic systems and sewage treatment plants, utilizing readily available materials like garbage cans and sawdust. The system focuses on mummifying human waste in a dry environment within sealed garbage cans to prevent composting and the escape of pathogens. This dry environment also stops the loss of valuable carbon and nitrogen to the atmosphere, which is a common issue with hot composting. After two years of aging in the sealed cans, the resulting "willow candy" is pathogen-free and can be safely applied as fertilizer. While this nutrient-rich material could be used on any garden, it is best suited for "poop beasts" like willow, cottonwood, poplar, and bamboo, which can readily absorb the high nutrient content without harm. This system promotes a closed-loop approach, turning what is often considered waste into a valuable resource for growing beneficial plants.