Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The willow feeder system is a permaculture solution for managing human waste, developed by Paul Wheaton, that prioritizes safety, sustainability, and nutrient cycling. It is designed to be a "freaky-cheap" alternative to conventional septic systems and sewage treatment plants, utilizing readily available materials like garbage cans and sawdust. The system focuses on mummifying human waste in a dry environment within sealed garbage cans to prevent composting and the escape of pathogens. This dry environment also stops the loss of valuable carbon and nitrogen to the atmosphere, which is a common issue with hot composting. After two years of aging in the sealed cans, the resulting "willow candy" is pathogen-free and can be safely applied as fertilizer. While this nutrient-rich material could be used on any garden, it is best suited for "poop beasts" like willow, cottonwood, poplar, and bamboo, which can readily absorb the high nutrient content without harm. This system promotes a closed-loop approach, turning what is often considered waste into a valuable resource for growing beneficial plants.
WOFATI structures are characterized by a thoughtful design that prioritizes passive systems and natural, locally sourced materials. The "two-skin" system, composed of a double layer of polyethylene membrane, encapsulates the earthen roof, providing a durable and waterproof barrier. The lower layer hugs the structure, while the upper layer defines the thermal mass surrounding it, with at least eight inches of dirt between the layers and sixteen inches on top. WOFATI designs emphasize a harmonious integration with the surrounding woodland, incorporating the "soil on wood" building technique. This method eliminates the need for a conventional concrete foundation, making construction faster and more affordable. A distinctive feature of WOFATI houses is the large gable roof on the downhill side, often incorporating glazing to allow light penetration, while at least 35% of the uphill wall features windows for optimal passive solar gain. This strategic placement and sizing of windows is crucial for maximizing natural light and regulating internal temperature, contributing to the effectiveness of Annualized Thermal Inertia.
HUSP, a concept representing advanced sustainable agriculture, goes beyond the current practices of permaculture, envisioning a future where food production systems have evolved over centuries of continuous optimization. The concept, inspired by traditional Indigenous practices, imagines a United States of Pocahontas (USP) where agricultural methods prioritize harmony with nature, rejecting environmentally harmful practices such as plowing and the use of petroleum-based fertilizers and pesticides. In this idealized future, HUSP leads to higher food yields per acre, improved human health, and a thriving health tourism industry. The realization of HUSP principles in the real world hinges on collaborative experimentation and knowledge sharing between practitioners of various sustainable approaches, including permaculture, biodynamic farming, and native plant cultivation. Such a project would require a supportive environment with minimal government regulation to encourage creative solutions and accelerate progress. HUSP aims to not only "rediscover" lost agricultural knowledge but to push the boundaries of sustainable agriculture, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems, producing abundant, nutritious food while maintaining ecological balance.
The berm shed is more than just a simple storage structure; its construction incorporates advanced techniques that prioritize sustainability, durability, and integration with the natural environment. Earthworks play a crucial role, as careful shaping of the landscape is required to create the berm that covers a portion of the shed's sloping roof. This berm acts as a natural insulator and thermal mass, helping to regulate temperature inside the structure. The "attic" cell design, as discussed in source, involves a specific configuration at the termination ends of the berm shed, further enhancing its thermal efficiency. Round wood timber framing, a technique using logs instead of dimensional lumber, is often employed, lending structural strength and a rustic aesthetic. A key consideration is the long-term durability of the wood in contact with soil. Source emphasizes the importance of peeling the bark from posts before burial to reduce the probability of rot, highlighting the evolution of construction techniques for increased longevity. Additionally, using gravel in post holes, as described in source, helps with drainage and further protects the wood from moisture. These advanced concepts, when combined, result in a berm shed that is not only functional and visually appealing but also a testament to sustainable building practices deeply rooted in permaculture principles.