Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
HUSP, a concept representing advanced sustainable agriculture, goes beyond the current practices of permaculture, envisioning a future where food production systems have evolved over centuries of continuous optimization. The concept, inspired by traditional Indigenous practices, imagines a United States of Pocahontas (USP) where agricultural methods prioritize harmony with nature, rejecting environmentally harmful practices such as plowing and the use of petroleum-based fertilizers and pesticides. In this idealized future, HUSP leads to higher food yields per acre, improved human health, and a thriving health tourism industry. The realization of HUSP principles in the real world hinges on collaborative experimentation and knowledge sharing between practitioners of various sustainable approaches, including permaculture, biodynamic farming, and native plant cultivation. Such a project would require a supportive environment with minimal government regulation to encourage creative solutions and accelerate progress. HUSP aims to not only "rediscover" lost agricultural knowledge but to push the boundaries of sustainable agriculture, fostering innovation and leading to a future where food production systems are deeply integrated with natural ecosystems, producing abundant, nutritious food while maintaining ecological balance.
WOFATI structures demonstrate remarkable effectiveness due to their unique design features and emphasis on passive systems. The "two-skin" system, characterized by a double layer of membrane, protects the structure from moisture, ensuring dryness and longevity. WOFATI designs prioritize the use of natural and locally sourced materials, primarily wood and earth, significantly reducing the building's environmental impact and embodying the "freaky-cheap" philosophy pioneered by Mike Oehler. The core principle of "Annualized Thermal Inertia" harnesses the earth's thermal mass to regulate temperature fluctuations, providing passive heating in the winter and cooling in the summer. Large windows strategically placed on the uphill side, along with a spacious gable roof on the downhill side, often incorporating glazing, maximize passive solar gain, further enhancing energy efficiency. By minimizing reliance on artificial heating and cooling systems, WOFATIs achieve substantial energy savings. Allerton Abbey, the first WOFATI built at Wheaton Labs, exemplifies the practicality and success of this building technique
Dry outhouses offer a multitude of positive environmental impacts, aligning perfectly with the core principles of permaculture and sustainable living. Unlike conventional flush toilets that waste gallons of clean water and contribute to pollution, dry outhouses conserve water and prevent contamination. The "no pee" policy, combined with effective urine diversion systems, further minimizes the volume of waste and potential for groundwater pollution. The use of sawdust not only controls odors but also facilitates a dry composting process, essentially mummifying the waste over time and reducing it to poop-jerky after two years. This aged material is then safely used as a nutrient-rich fertilizer for "poop beast" trees like willows, poplars, and cottonwoods. This willow feeder system not only prevents harmful waste from entering the environment but also actively enriches the soil, promoting the growth of beneficial plants and trees. By avoiding chemical fertilizers and promoting natural decomposition, dry outhouses contribute to a healthier ecosystem, aligning with the HUSP (Horticulture of the United States of Pocahontas) concept that emphasizes sustainable land management practices. Furthermore, the absence of a water-intensive septic system eliminates the risk of leaks and contamination, safeguarding groundwater and promoting ecological balance. Therefore, dry outhouses offer a compelling example of how simple, well-designed systems can have a profound positive impact on the environment.
Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.