Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Hugelkultur, is an advanced permaculture technique for creating self-sufficient, raised garden beds by burying wood beneath the soil. Hugelkultur beds can be built in various shapes and sizes, from small backyard gardens to large farm-scale operations. This technique utilizes a variety of wood, from small twigs to whole trees, which decompose over time to create a beneficial environment for plant growth. The wood acts as a sponge, holding water and reducing or eliminating the need for irrigation. As the wood decomposes, it attracts beneficial microorganisms and releases nutrients, creating a fertile "soil on wood" environment that requires minimal fertilization. Hugelkultur is an environmentally sustainable technique that utilizes organic materials that would otherwise be discarded, embodying the permaculture principles of working with nature and reducing waste.. This technique is also applicable to diverse climates and has been proven effective even in desert environments

Hugelkultur, meaning "hill culture" in German, is a sustainable gardening method that involves creating raised garden beds by burying wood under soil. This technique, described as "soil on wood," uses logs, branches, twigs, and even whole trees, which decompose and act as "a sponge to hold water". The decomposition process attracts beneficial microorganisms, creates air pockets, and releases nutrients, resulting in fertile soil that reduces or eliminates the need for irrigation and fertilization. Hugelkultur is a versatile technique that can be implemented on a small scale or on a large scale, even spanning nearly a kilometer. By utilizing wood that would otherwise be discarded, hugelkultur promotes environmental sustainability and aligns with permaculture principles, allowing gardeners to "grow a typical garden without irrigation or fertilization"

Hugelkultur, meaning "hill culture," is a sustainable permaculture gardening method that uses buried wood to create raised garden beds. This technique involves layering logs, branches, and other woody debris at the base of the bed and covering them with soil. As the wood decomposes, it acts as a sponge, retaining moisture, improving aeration and drainage, and releasing nutrients, reducing the need for watering and fertilizers. Hugelkultur beds are ideal for growing various plants, especially those that prefer well-drained soil. By harnessing the natural process of decomposition, hugelkultur promotes a thriving garden ecosystem and aligns with permaculture's goal of sustainable systems.

WOFATI, an acronym for Woodland Oehler Freaky-cheap Annualized Thermal Inertia, is an innovative approach to sustainable building developed by permaculture expert Paul Wheaton. WOFATI structures are designed to be eco-friendly, utilizing locally sourced natural materials, primarily wood and earth. These structures are intended to be located on or near woodlands, promoting a harmonious integration with the natural surroundings. Annualized Thermal Inertia, a key element of WOFATI design, harnesses the thermal mass of the surrounding earth to provide passive heating in winter and cooling in summer, thereby minimizing the need for artificial temperature regulation. WOFATI structures are inspired by the work of Mike Oehler, a pioneer in earth-sheltered building known for his simple, "freaky-cheap" designs, which Wheaton has adapted and refined to further reduce construction costs. WOFATI buildings are typically characterized by a large gable roof on the downhill side, with at least 35% of the uphill wall featuring glass or other light-transmitting materials to maximize passive solar gain. Allerton Abbey, the first WOFATI structure, and Wofati 0.8 are both located at Wheaton Labs in Montana and serve as prominent examples of this unique building style.

The lorena is a unique cooktop design created to optimize the performance of rocket stoves. This specialized cooktop features a metal plate with a central hole that sits directly above the rocket stove's burn chamber, allowing for direct heat transfer to large pots. The surrounding metal plate serves as an additional cooking surface, similar to the glass cooktop used at Allerton Abbey, offering flexibility for a range of cooking tasks. This design aims to maximize heat utilization from the rocket stove, promoting energy efficiency and faster cooking times. When a large pot is heated to the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to retain heat. Proposed implementations often include integrating the lorena into an outdoor kitchen setting for added practicality. The lorena embodies the ongoing innovation within rocket stove technology, striving for better heat transfer and improved cooking performance.