Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.
WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.
Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.
Made of ancient diatom skeletons, diatomaceous earth is edible to mammals but deadly to insects. De scratches through a bug's waxy exoskeleton coating turning their innards to teeny tiny bug jerky.