Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.
he willow feeder system is a sustainable and "freaky-cheap" approach to human waste management developed by permaculture expert Paul Wheaton. This system utilizes a dry environment inside sealed garbage cans to mummify human waste, which prevents composting and the release of pathogens. The system is designed to be a safe and effective alternative to conventional septic systems and sewage treatment plants. A small amount of sawdust is added to each can, mainly for aesthetics. After two years, the resulting pathogen-free material, referred to as "willow candy," can be safely used as fertilizer for trees that can handle its high nutrient content, known as "poop beasts." These trees include willow, cottonwood, poplar, and bamboo. The willow feeder system embodies permaculture principles by transforming human waste into a valuable resource for growing beneficial plants while minimizing environmental impact.
Dry outhouses offer a multitude of positive environmental impacts, aligning perfectly with the core principles of permaculture and sustainable living. Unlike conventional flush toilets that waste gallons of clean water and contribute to pollution, dry outhouses conserve water and prevent contamination. The "no pee" policy, combined with effective urine diversion systems, further minimizes the volume of waste and potential for groundwater pollution. The use of sawdust not only controls odors but also facilitates a dry composting process, essentially mummifying the waste over time and reducing it to poop-jerky after two years. This aged material is then safely used as a nutrient-rich fertilizer for "poop beast" trees like willows, poplars, and cottonwoods. This willow feeder system not only prevents harmful waste from entering the environment but also actively enriches the soil, promoting the growth of beneficial plants and trees. By avoiding chemical fertilizers and promoting natural decomposition, dry outhouses contribute to a healthier ecosystem, aligning with the HUSP (Horticulture of the United States of Pocahontas) concept that emphasizes sustainable land management practices. Furthermore, the absence of a water-intensive septic system eliminates the risk of leaks and contamination, safeguarding groundwater and promoting ecological balance. Therefore, dry outhouses offer a compelling example of how simple, well-designed systems can have a profound positive impact on the environment.
The construction of a berm shed, a sustainable and aesthetically pleasing storage solution, involves a unique process that utilizes natural building techniques and earth-sheltering principles. First, the building site is prepared using earthworks, shaping the surrounding land to create a berm, which is a raised bank of soil that will eventually cover a portion of the shed's sloping roof. Round wood timber framing is a common technique employed in berm shed construction, utilizing logs sourced from the property instead of commercially produced dimensional lumber. These logs are carefully selected and placed to form the structural framework of the shed, including the walls and roof supports. Once the timber frame is erected, a moisture barrier, such as billboard material or layers of poly sheeting and newspaper, is installed over the logs to protect them from the elements. Finally, soil is carefully layered on top of the moisture barrier, creating the berm and providing insulation, thermal mass, and a natural aesthetic. The construction process prioritizes using natural, locally sourced materials and minimizing the use of energy-intensive and potentially toxic commercial products, aligning with permaculture principles of sustainability and self-sufficiency.
The SKIP program, or Skills to Inherit Property, connects aspiring homesteaders ("Skippers") with landowners ("Otisies") seeking successors for their properties. Anyone interested in acquiring land for sustainable living can join by creating a free account on permies.com, a website dedicated to permaculture. Participants select "Badge Bits" (BBs) to complete from the PEP curriculum (Permaculture Experience according to Paul), which encompasses over 1,400 practical projects demonstrating essential permaculture skills. Skippers document their BB completion with photos and videos uploaded to permies.com for review and verification by the community. By completing BBs, Skippers earn progressively advanced badges – Sand, Straw, Wood, and Iron – signifying their skill level. These badges are displayed on their profiles, showcasing their dedication and expertise to potential Otisies. For hands-on learning, Skippers can attend the annual SKIP event at Wheaton Labs, which costs $2,250, or engage with the supportive community on the permies.com forums.