Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
The willow feeder system is a sustainable and "freaky-cheap" method of managing human waste, developed by permaculture innovator Paul Wheaton as an alternative to traditional septic systems and sewage treatment plants. This innovative system transforms human waste into a nutrient-rich fertilizer, called "willow candy," through a process of mummification. Instead of composting the waste, as in composting toilets, the willow feeder system relies on a dry environment within sealed garbage cans to prevent decomposition and the survival of pathogens. A small amount of sawdust is added to the cans, primarily for aesthetics. After two years of aging, the "willow candy" becomes pathogen-free and can be safely used as fertilizer. This material, rich in carbon and nitrogen, is particularly beneficial for "poop beasts," a term used to describe trees like willow, cottonwood, poplar, and bamboo, which can tolerate and thrive on the high nutrient levels. By turning human waste into a valuable resource for growing these beneficial plants, the willow feeder system embodies the core principles of permaculture, promoting a closed-loop cycle that minimizes waste and environmental impact.
WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.
When discussing "woodland" versus "forest," the structural and management approaches differ significantly, particularly within a permaculture context. Forests, often managed for timber production, frequently involve monoculture planting and practices like clear-cutting, which can create what Sepp Holzer calls a "conifer desert." This leads to decreased biodiversity, depleted soil health, and disrupted ecological balance. "Woodland" management, as described by Ben Law, focuses on a more holistic, interconnected ecosystem. Woodland management prioritizes biodiversity, recognizing the interconnectedness of all lifeforms within the ecosystem. Active human participation is encouraged, mimicking the sustainable land management practices of Indigenous cultures, as exemplified by the HUSP (Horticulture of the United States of Pocahontas) concept. Woodlands are viewed as spaces where humans actively participate and nurture, promoting long-term health and resilience. This active management ensures the woodland provides not only timber but also food, medicine, and wildlife habitat. The selection of "woodland" in Wofati design reflects a conscious shift away from extractive forestry practices and toward a more sustainable and harmonious relationship with the natural world. In essence, the distinction between woodland and forest highlights the crucial role of human management in shaping the structure and health of these ecosystems, emphasizing the permaculture principle of responsible stewardship of natural resources.
The SKIP program, or Skills to Inherit Property, connects aspiring homesteaders ("Skippers") with landowners ("Otisies") seeking successors for their properties. Anyone interested in acquiring land for sustainable living can join by creating a free account on permies.com, a website dedicated to permaculture. Participants select "Badge Bits" (BBs) to complete from the PEP curriculum (Permaculture Experience according to Paul), which encompasses over 1,400 practical projects demonstrating essential permaculture skills. Skippers document their BB completion with photos and videos uploaded to permies.com for review and verification by the community. By completing BBs, Skippers earn progressively advanced badges – Sand, Straw, Wood, and Iron – signifying their skill level. These badges are displayed on their profiles, showcasing their dedication and expertise to potential Otisies. For hands-on learning, Skippers can attend the annual SKIP event at Wheaton Labs, which costs $2,250, or engage with the supportive community on the permies.com forums.
The "lorena" is a specialized cooktop design for rocket stoves, incorporating features that enhance heat transfer and cooking efficiency. As described in the sources, a lorena typically consists of a metal plate with a central hole, positioned directly above the rocket stove's burn chamber. The hole allows for direct heat transfer to large pots, facilitating rapid heating. The surrounding metal plate also acts as a cooking surface, similar to the glass cooktop found at Allerton Abbey, one of the WOFATI structures at Wheaton Labs. This dual functionality makes the lorena a versatile cooking solution for both large-scale and smaller cooking tasks. The design emphasizes maximizing heat utilization from the rocket stove, making it an energy-efficient option. Discussions in the sources suggest integrating the lorena into an outdoor kitchen setup, further enhancing its practicality and convenience. The lorena represents an innovative application of rocket stove technology, designed to optimize heat transfer and improve cooking performance.