Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
WOFATI, an acronym coined by Paul Wheaton, stands for Woodland Oehler Freaky-cheap Annualized Thermal Inertia. It defines a type of earth-sheltered, passive building that blends affordability with energy efficiency. Inspired by the work of Mike Oehler, a pioneer of earth-sheltered building, WOFATI designs use locally sourced, natural materials, such as wood and earth, to minimize both cost and environmental impact. Central to the WOFATI concept is Annualized Thermal Inertia, which utilizes the surrounding earth as a thermal mass to moderate temperatures year-round. This means that the building stays warm in the winter by storing heat from the summer, and cool in the summer by retaining the coolness of the winter, greatly reducing the need for artificial heating and cooling. WOFATI structures typically have a large gable roof on the downhill side, and at least 35% of the uphill wall is made of glass or other light-transmitting material to maximize passive solar gain. WOFATI buildings are ideally situated on or near a woodland, emphasizing a harmonious integration with nature. Allerton Abbey, the first WOFATI, along with Wofati 0.8, are examples of this building style and can be found at Wheaton Labs.
A dry outhouse, a simple and sustainable alternative to conventional flush toilets and septic systems, is frequently discussed within permaculture circles as a means of minimizing environmental impact and maximizing resource utilization. This type of outhouse is characterized by a pit dug into the ground, strategically located on a higher elevation point to encourage water runoff and maintain dryness. Key design elements for a successful dry outhouse include a "no pee" policy, the use of ample sawdust for odor control and composting, and urine diversion mechanisms, particularly important for accommodating female anatomy. While concerns about groundwater contamination exist, proper placement, construction, and the incorporation of heavy-feeding trees or plants like willows in a "tree bog" system can mitigate these risks. Furthermore, the integration of a urine separator can significantly reduce the volume and toxicity of waste, facilitating easier composting and nutrient recycling. The dry outhouse, particularly when combined with urine diversion and careful management, offers a cost-effective and environmentally sound approach to sanitation, aligning with permaculture principles of resource conservation and closed-loop systems.
The "freaky-cheap" aspect of WOFATI is fundamental to its appeal and accessibility. Inspired by Mike Oehler's pioneering work in earth-sheltered building, WOFATI prioritizes utilizing readily available natural materials, primarily wood and earth, minimizing reliance on expensive, manufactured products. By embracing the "freaky-cheap" ethos, WOFATI construction drastically reduces building costs, making sustainable living a more attainable reality. The emphasis on "soil on wood" construction eliminates the need for a traditional concrete foundation, further reducing expenses. This approach also facilitates rapid building times, as demonstrated by the construction of WOFATI structures at Wheaton Labs, such as Allerton Abbey. The use of recycled or salvaged materials, whenever possible, further contributes to the affordability of WOFATI buildings. By minimizing material costs and construction time, WOFATI empowers individuals to create sustainable and comfortable dwellings without incurring significant financial burdens.
The berm shed, a hallmark of permaculture design, is an eco-friendly, earth-sheltered structure renowned for its unique construction techniques. Earthworks are fundamental to its creation, as the surrounding landscape is carefully shaped to form the berm that will encase a portion of the shed's sloping roof. This berm serves a dual purpose, acting as both a natural insulator and a source of thermal mass, effectively regulating the internal temperature. The structural framework of the berm shed is often built using round wood timber framing, a technique that prioritizes using logs instead of conventional dimensional lumber, further enhancing its sustainable appeal. However, the longevity of these logs, especially when in contact with soil, is a crucial consideration. The sources recommend peeling the bark from posts before burying them, a technique born from experience and aimed at minimizing the risk of rot. Another technique for ensuring the durability of the structure involves incorporating gravel into the post holes. The gravel facilitates drainage, preventing water from pooling around the base of the posts and contributing to premature decay. These carefully considered details, combined with the innovative "attic" cell design at the termination ends of the shed, as described in source, showcase a commitment to sustainable building practices that go beyond mere functionality, exemplifying the core principles of permaculture.