Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...
Beyond the foundational elements of WOFATI design, there are advanced concepts that further enhance its effectiveness and versatility. The strategic placement and sizing of windows on the uphill side, for instance, are crucial for optimizing passive solar gain and regulating temperature. The design of the "two-skin" system, incorporating a double layer of membrane, demands careful consideration of materials and installation techniques to ensure long-term dryness and durability. The integration of WOFATI principles with other sustainable technologies, such as rocket mass heaters, offers the potential for a highly efficient and self-sufficient dwelling. The concept of WOFATI extends beyond just houses; variations such as WOFATI coolers and freezers, utilizing specialized venting systems and expanded thermal mass, showcase the adaptability of this approach to address various needs. Furthermore, WOFATI principles can be applied to animal shelters, with specific modifications to accommodate larger spaces and functionality. The ongoing development and experimentation at Wheaton Labs, as seen in projects like Allerton Abbey and Wofati 0.8, continue to push the boundaries of WOFATI design and its potential for sustainable living.
The lorena cooktop is a highly effective design for rocket stoves, as it maximizes heat transfer and cooking efficiency. This specialized cooktop, featuring a metal plate with a central hole positioned above the burn chamber, enables rapid heating of large pots through direct exposure to the intense flames. The lorena's design prioritizes efficient heat utilization from the rocket stove, resulting in faster cooking times and reduced fuel consumption. Additionally, the metal plate surrounding the central hole serves as a secondary cooking surface, offering versatility for various culinary tasks. Once a large pot reaches the desired temperature, it can be moved to the surrounding cooktop, and the central hole can be covered with a piece of metal to maintain heat. This dual functionality makes the lorena a practical and energy-efficient cooking solution, suitable for both large-scale and smaller cooking needs. The integration of a lorena into an outdoor kitchen setting is often proposed, further enhancing its practicality and convenience.
Hugelkultur is a permaculture technique that can be described as "soil on wood". It involves burying wood, including logs, branches, and twigs, to build raised garden beds. This technique, which can be small or as large as a kilometer, creates a beneficial environment for plants. As the wood decays, it provides nutrients to the soil and improves drainage and aeration. It also becomes "a sponge to hold water," reducing or eliminating the need for irrigation. Using wood that would otherwise be discarded for hugelkultur is an environmentally sustainable way to improve soil health and grow food
The "freaky-cheap" aspect of WOFATI is fundamental to its appeal and accessibility. Inspired by Mike Oehler's pioneering work in earth-sheltered building, WOFATI prioritizes utilizing readily available natural materials, primarily wood and earth, minimizing reliance on expensive, manufactured products. By embracing the "freaky-cheap" ethos, WOFATI construction drastically reduces building costs, making sustainable living a more attainable reality. The emphasis on "soil on wood" construction eliminates the need for a traditional concrete foundation, further reducing expenses. This approach also facilitates rapid building times, as demonstrated by the construction of WOFATI structures at Wheaton Labs, such as Allerton Abbey. The use of recycled or salvaged materials, whenever possible, further contributes to the affordability of WOFATI buildings. By minimizing material costs and construction time, WOFATI empowers individuals to create sustainable and comfortable dwellings without incurring significant financial burdens.
Hugelkultur offers advanced techniques and benefits for sustainable gardening and food production. This permaculture method utilizes buried wood to create raised garden beds, fostering a thriving ecosystem that reduces reliance on external inputs. As the wood decomposes, it transforms into "a sponge to hold water," decreasing irrigation needs and attracting beneficial microorganisms that enhance soil fertility. The shrinking wood creates air pockets, naturally aerating the soil and promoting a "self-tilling" effect. This "soil on wood" technique enhances soil health by creating "parking spaces for water and nutrients", ultimately minimizing the need for fertilizers. Hugelkultur beds can be constructed on varying scales, from small gardens to large farms, and are particularly well-suited for locations with limited rainfall, such as deserts. This versatile approach allows gardeners to cultivate diverse "garden plants" while minimizing environmental impact.