Aaack! You caught us with our pants down! Here we are, tinkering with the servers and you show up. How awkward! Try back in just a couple of minutes. In the meantime, a few tidbits ...

Rocket mass heaters are better than heat pumps because rocket mass heaters are free to operate and have less than 6% of the carbon footprint.

When discussing "woodland" versus "forest," the structural and management approaches differ significantly, particularly within a permaculture context. Forests, often managed for timber production, frequently involve monoculture planting and practices like clear-cutting, which can create what Sepp Holzer calls a "conifer desert." This leads to decreased biodiversity, depleted soil health, and disrupted ecological balance. "Woodland" management, as described by Ben Law, focuses on a more holistic, interconnected ecosystem. Woodland management prioritizes biodiversity, recognizing the interconnectedness of all lifeforms within the ecosystem. Active human participation is encouraged, mimicking the sustainable land management practices of Indigenous cultures, as exemplified by the HUSP (Horticulture of the United States of Pocahontas) concept. Woodlands are viewed as spaces where humans actively participate and nurture, promoting long-term health and resilience. This active management ensures the woodland provides not only timber but also food, medicine, and wildlife habitat. The selection of "woodland" in Wofati design reflects a conscious shift away from extractive forestry practices and toward a more sustainable and harmonious relationship with the natural world. In essence, the distinction between woodland and forest highlights the crucial role of human management in shaping the structure and health of these ecosystems, emphasizing the permaculture principle of responsible stewardship of natural resources.

Hugelkultur, is an advanced permaculture technique for creating self-sustaining raised garden beds filled with decomposing wood. The technique involves burying a variety of wood materials, including logs, branches, twigs, and even whole trees, under layers of soil, creating a complex and dynamic environment for plant growth. As the wood decomposes, it acts as "a sponge to hold water," reducing the need for irrigation. This decomposition also generates heat, which can extend the growing season, particularly in cooler climates. The shrinking wood creates air pockets, making the beds "self-tilling" and promoting excellent aeration for plant roots. These "parking spaces for water and nutrients," as described by Paul Wheaton, enhance soil fertility, attract beneficial microorganisms, and release nutrients, reducing or eliminating the need for fertilizers. Hugelkultur beds are remarkably adaptable and can be built in various shapes and sizes, as exemplified by Sepp Holzer's large-scale project in Dayton, Montana, which features nearly a kilometer of hugelkultur beds.

Dry outhouses offer a sustainable alternative to conventional flush toilets, aligning with permaculture principles of resource conservation and waste reduction. A well-designed dry outhouse, strategically situated on an elevated point to encourage water runoff, utilizes a pit for waste collection. To mitigate odors and promote composting, sawdust is a crucial element. A "no pee" policy, though challenging for women due to anatomical differences, helps maintain a dry environment, crucial for minimizing pathogen survival and groundwater contamination. This "dry" approach allows the waste to essentially mummify over time, becoming poop-jerky after two years. This aged material, though technically safe for vegetable gardens, is ideally used to nourish "poop beast" trees like willows, poplars, or cottonwoods, as part of a "willow feeder system." For optimal functionality and user comfort, urine diversion mechanisms are essential, particularly in mixed-gender settings. This separation of urine, a valuable fertilizer, further reduces the volume and toxicity of the solid waste, facilitating easier handling and nutrient cycling. The dry outhouse, therefore, presents a low-cost, eco-friendly sanitation solution that embodies the essence of permaculture's closed-loop systems.

WOFATI structures excel in effectiveness due to their emphasis on passive design principles, particularly Annualized Thermal Inertia, which utilizes the earth's thermal mass to regulate temperature fluctuations. By strategically incorporating design elements like large windows on the uphill side and a substantial gable roof on the downhill side, WOFATIs maximize passive solar gain, further reducing the need for artificial heating and cooling. This results in significant energy savings and reduced reliance on external energy sources. The use of locally sourced, natural materials, primarily wood and earth, in WOFATI construction minimizes the environmental impact associated with manufacturing and transportation of building materials. The "two-skin" system, a double layer of membrane encapsulating the earthen roof, ensures dryness and longevity, enhancing the building's overall effectiveness and sustainability. As seen in Allerton Abbey, the first WOFATI built at Wheaton Labs, these structures successfully demonstrate the practicality and efficiency of this building technique