shane connor

+ Follow
since Mar 18, 2017
Merit badge: bb list bbv list
For More
Apples and Likes
Apples
Total received
In last 30 days
0
Forums and Threads

Recent posts by shane connor

Joy, it's kinda funny, first time I got my CO2 meter, and I'm sure everybody does this, too, I exhaled onto it to see what it'd register and it popped up over 2,000 ppm of CO2.

So, there really is something to that, spending a lot of time up close & personal with your plants.

Though it might not have been all that talking to them as much as just the breathing on them in the process.
7 years ago
Joy, Yes, adding CO2 can be a big plus, faster growth and many plants then thrive at hotter temps than normal, too. It's essentially a gaseous fertilizer.

However, only really shines if everything else is already dialed in first and you only use it during daylight hours, not night.

Many commercial horticulturists (especially marijuana growrooms) will run it about 4X's higher, around 1.200 ppm, some even 1.500 ppm or more, where normal air is typically in 350-425 ppm neighborhood, except for greenhouses without good daytime ventilation, plants eat it up fast during photosynthesis and when it gets down under 200 ppm, they start shutting down in a big way.

CO2 is heavier than air, so in closed greenhouse or growroom that it's being put in, they do it above plants or hose it in at their fans aimed at plants and keep greenhouse sealed up good so it won't leak out too quickly.

Google it, lots of interesting stuff about it out there, also clean burning propane greenhouse heaters in winter can do double duty adding CO2 there, too. And, there's a lot of cleaner ways to add it, too, like getting tanks of it with regulator or fermenting brews inside greenhouse, etc. CO2 ppm meter to check and track air content are inexpensive.

7 years ago
Sorta related, can anybody tell me how to figure how much heat is lost through a thin horizontal layer of poly film on top of
greenhouse when inside air temp at that ceiling top is 100F and light breeze of 70, 80 or 90F outside wind is brushing by it?

IOW's, what cooling of that 100F air temp might be expected if system isolated where no more heat being added or any other
factors involved, just the relatively cooler breeze outside against that poly that's containing 100F air under plastic there?

Thanks for any ideas.
7 years ago

Hans Quistorff wrote:Farmers used to use aluminum irrigation pipes to connect from the pump to the sprinklers. These would be highly heat conductive to use as a radiator and may be for sale used in your area.



Got a lot of the Al irrigation piping out this way.

Tons cheaper than anything copper, that's for sure!

Thanks for that, might need to go visit local scrap yard,,, again.

After checking craigs list.

- Shane
7 years ago
Dan,

I'd posted about the project a couple days ago here...
https://permies.com/t/63868/Considerations-cooling-GH-hot-desert

I'm wanting to use H2O to draw heat out of closed CO2 system year round for
hot desert location, or rather for as much of each day as I can before surrendering
to excessive heat gain and opening it up to natural ventilation.

Looking at plumbing them all together at bottom and drawing water from there
to radiator in GH and having one manifold tube spanning all their tops for return.

Figure with common plumbing at bottom, they'll be self leveling and if I find one
or two getting all the action I'll close down their spigots a bit to even out some.

More about also incorporating evaporative cooling there, too, and night sky radiative
cooling of that water mass and also redirecting radiator in & out airflow to ambient
to cool that water anytime night air is cooler than the water, all at that link above, too.

Plan is subject to revision as reality reveals itself

- Shane

PS - On track to figuring out my original IBC question, 2" female to Tee will get'r'done.
7 years ago

Jeffrey Sullivan wrote:Shane, Google IBC caps and you'll get all kinds of options.



Thanks, Jeffrey, been scouring photos at google for "IBC fittings",
like to find a T, like this from England could work, if available here...

7 years ago
I'm planning on doing something similar with ten totes in a row, but above ground and
boxed in on all sides with 5" freezer panels I'd salvaged @ 50 cents sq ft via craigs list.

My question is; I'm trying to find simplest cheapest plumbing for connecting all their 2"
outlets together. Like to find a simple screw on "T" that'd accept push on hose or any
other easy combo requiring fewest parts & adapters that won't stick out significantly.

Any suggestions appreciated, everything I've seen so far looks more convoluted than it
oughta be.
7 years ago
I'm thinking now for that night sky radiative cooling of the 10 totes combined 2,600 gallons water mass enclosed in the 5" freezer panel 'cool box', it'd be much more efficient and a whole lot easier not to mess with lifting and securing that freezer panel top every night, then mornings closing, and risk then not maintaining a good seal moving it so frequently, but instead just pump the water to the top.

IOW's, atop the insulated panel cover on the top, which all of its segments together total approximately 5' wide by 33' long, I'd pump water from totes below and through a couple hundred feet of hose or piping laying on top there that'd drain back into totes though manifold that connected to them all at their tops under the insulated cover. (With all totes also common plumbed together at their bottoms, they'd be self leveling among themselves.)

The hose/pipe and the aluminum top of freezer panel it sat upon would then all be coated or painted in best emissivity product rated for that night sky atmospheric window between 8–13 μm.

Lot's of good articles about that radiative effect, here's one http://onlinelibrary.wiley.com/doi/10.1002/advs.201500360/full

That hose or pipe would also need to be highly thermally conductive, too.

This top insulating panel, that this coated hose/pipe would sit atop, would still have mylar all along around its outer edge all angled up, too, like a solar cooker. And, hose/pipe would have IR translucent thin plastic covering to minimize ambient air temperature eroding night cooling gains via convection interaction with warmer air. Easier to keep emissive top clean then, too, just shake out or replace cheap plastic as needed.

My questions for this portion of the project then are...

#1 - What's best, commercially available, thermally conductive high emissivity paint or coating, ideally targeted for that 8–13 μm window?

#2 - What's best hose or piping that'll readily conduct heat of water passing through it? I know copper would be great, but need to also look at anything cheaper, too.

#3 - What's 'sweet spot' size of hose and pump combo I need to be shooting for to get the maximum tote water mass exposed to that radiative cooling effect up top?

Pump might also do double duty if it works out, with valve at its output, to be the pump for the radiator inside that's only being used during the day cooling internal air there.

Appreciate any thoughts, 'rules of thumb', or suggestions.

Thanks.



7 years ago
For summertime, hot dry, West Texas GH that's 33' L X 12' W X 10' H, roughly 400 sq ft, 4000 cubic feet, I want to try to delay fresh air ventilation exchange for as long as possible each day for experimenting with sealed system CO2 injection.  

I'll have a monster solar heat build up challenge, to say the least, but I want to invite suggestions here for mass cooling setup that might could be used to extend that closed up period by any additional x number of hours on a daily basis.

I'll vent structure (abandoning CO2 for the day) and can even partially or completely shut off any additional solar gain whenever this scheme to cool internal air has been maxed out and internal temps getting overly excessive.

I've no illusions of beating the sun at this game, just postponing and extending into the daylight hours a little longer the maximum time under CO2 closed system before surrendering and abandoning CO2 for the day.

Here's what I have in mind that I'd first be interested in suggestions to maximize its effectiveness, before suggestions for going in a totally different direction, though eager to explore whatever sounds like it'd work better.

I've got ten IBC 260 gallon totes I can fill with water after I position them outside, nearly right up against and all along northern long side of GH wall, all in a tight row, and then airtight box them all in, on bottom & top, too, as a single group with 5" freezer panels (50 cents sq ft salvaged) through which I can pump hot exhaust air from GH into one end of this rectangle 'cooling box' and after that CO2 enriched hot air has wound all around, under and alongside them, hopefully cooled down some, air can next be inline fan pumped through either a swamp cooler or mister before it re-enters bottom of GH interior on opposite side where it'd been exhausted.

BTW, very low humidity there to begin with and GH can usually use some additional anyways. However, I don't have unlimited water to go crazy solely relying on evaporative cooler to do it all non-stop. I also don't have unlimited power for overly aggressive traditional mechanical cooling either. Everything's PV, batteries and inverters powered.

I'm also strongly considering that with all that water mass and the way it'll want to stratify, might be much better off just plumbing & pumping it to circulate through a radiator to where the air goes through it right before it next goes through that evaporative cooler or mister. Might could then get away with saving some water and energy only employing evaporator when this radiator and all other measures had maxed out first and it's needed most then, as a last resort, to better cap rate of internal air temp rising.

Also, to 'recharge' these IBC totes at night, in the 'cooling box', they will all have been spray painted with the best high emissivity paint or coating I can find, still looking for that if any suggestions, and all the insides of this box will have highly reflective mylar and the top will flip open 45 degrees outward, so at night I'd have it opened to maximize radiant cooling of the IBC containers, besides being exposed to the typically 25-30 degrees cooler ambient night air temps. Also, north side of GH above top of this 'cooling box' will also have that same reflective mylar up its outside to better facilitate IBC totes reflecting their heat skyward. From down in the box, all the totes radiant heat 'will see' is reflective mylar to the cold black outer space above.

Additionally, if employing the radiator plumbed to and pumping the cooler water in the totes during the daytime heat to cool the GH exhaust air going through it, then I could also redirect in & out air flow through radiator at night to help cool that same water anytime the ambient air is cooler than the water by directing that cooler ambient air through the radiator then instead.

Anyways, that's the basic plan, appreciate any other considerations I've overlooked or other suggestions to maximize this set up or, if basically too little cooling gain for all this proposed effort above here, another way altogether to explore.

Some of the questions I'm struggling with...

How fast, how many air changes per minute or longer duration, do I need to ideally be aiming to move exhaust air round trip through the IBC and radiator and/or evaporative cooler gauntlet?

Slower, so it gets chance to cool down more in contact with totes/radiator/evaporator longer, or always fast as possible to have higher volume of air/water contact?

What range of size CFM inline exhaust fan and also pusher fan at radiator and/or evaporative cooler might I be needing then, considering air resistance drag along most it's tortuous path?

I'll need some radiator and pump flow and fan size 'rules of thumb' to get a fix on sizing that whole system and suggestions on sources, too.

BTW, Cool tubes in the ground I'm a big fan of, too, but cost of excavation and piping has it not on top of my list... yet.

Appreciate any thoughts, thanks!



7 years ago