Only 48 hours left in our kickstarter!

New rewards and stretch goals. CLICK HERE!

  • Post Reply Bookmark Topic Watch Topic
  • New Topic

Bionutrients  RSS feed

Rory Turnbull
Posts: 22
  • Mark post as helpful
  • send pies
  • Quote
  • Report post to moderator

In the creation of biological nutrients, bionutrients, the basic process is the traditional fermentation. Fermentation process is a better system than simple extraction like boiling the plant materials, through infusion like making tea. In the United States, where compost tea is getting popular in organic agriculture, compost is made into tea, sugar or molasses are added, fermented to increase microbial population. A simple general formula or recipe in fermentation can be done for plants. For example, seaweeds. If you simply infuse seaweeds (which are quite difficult to breakdown, therefore hard to extract active ingredients), you may not get a more potent extracted active ingredients. If you ferment the same materials by adding sugar or molasses, it is easily broken down (biologically) by microorganisms and thus making nutrient more available. Microorganisms get their energy from sugar in fermenting the materials. Most healthy foods are fermented foods. Through fermentation, food are easily broken down, enzymes created, nutrition improved. That’s the reason why fermented foods like yogurt or kimchi (Korean pickles) are more nutritious than plain milk or vegetables.

In making bionutrients, the simple formula is to add 1/3 crude sugar or molasses and mixed with materials to be fermented and extracted. For example, let’s take papaya fruit fermented extract. We chop as thinly as possible ripe papaya, unwashed and unpeeled. We then add 1/3 crude sugar or molasses to the total weight or approximate volume of the papaya materials. Put the materials with at least 50-75% air gap and cover loosely with a lid and let it ferment for at least a week. After a week, you will notice some molds and microbial infections and will start smelling sweet, sour and alcoholic. The materials are then strained and liquid generated will be your pure fruit papaya extract. You can dilute this with 20 parts water. This diluted form can be used as bionutrient, using 2-4 tablespoons per gallon of water. Again, this extract can be added to animal drinking water and feeds, to compost pile or sprayed/watered to plants leaves and roots. This will be a good source of nutrient for plants or animals, and also for our beneficial indigenous microorganisms. Papaya extract is good source of enzyme pappain, beta-carotene and Vitamin C for example. So extract any plant material and just try to find out what kind of nutrients they have you can use for animal and plant nutrition. Should the materials you intend to use for extraction do not have much moisture (as compared to our papaya fruit example), you may add water enough to the level that will moisten all the materials.


Specific bionutrients, fermented plant and other material extracts we have used to a great success and you can adopt for their specific use:

Kangkong (water spinach) Fermented Extract

This is essentially used as growth promotant. Kangkong is sometimes called water spinach. It is a kind of vegetable that typically grows in fresh water. It can also grow in highly moist soil. It s basic characteristic is it grows very fast, similar to the rapid growth of kelp in the seas. To the natural farmers, this kind of plant or similar plant for that matter have natural growth promotant. In the scientific agricultural parlance, we speak of natural growth hormones like gibberellins, auxins and cytokinins. Plants that grow fast will have a better concentrations of these natural growth hormones. By observation, kangkong or kelp or even mugwort will fall on this category. Thus, axillary buds of kangkong, plants like cucumber, squash and watermelon will be good materials to ferment for this purpose. Once these are fermented, active ingredients extracted, you may use this to spray and/or water your plants. You will notice a great improvement in the growth of your plants.

Banana-Squash-Papaya (BSP) Fermented Extract

One of the major fermented extract we use for plant flowering and fruiting, specially for vegetables, are extracts from banana, squash and papaya. Apparently, these materials have high level of potassium especially banana, and beta carotene. Although I have not tried a similar recipe using materials readily available here in the US, I will presume that materials substitute can be used. For your own experimentation, you can possibly use comfrey, squash and carrot. Le me know if they will work. In the Philippines, when we induce flowering of mangoes, conventional agriculture use potassium nitrate. We have tried with success natural materials high in nitrogen and potassium. Interesting enough, our local organic farmers have experimented using seaweed extract in inducing flowering of mangoes. Isn’t it seaweed extract have lots of natural growth hormones and trace elements, and good source of nitrogen and potassium? Check out the kinds of materials you can ferment and use to induce growth, flowering and fruiting.

Fish Amino Acid

As a general rule, the higher the protein of the materials, when composted or fermented, the higher the nitrogen. We use a lot of fish scraps to generate high nitrogen on our fish extracts. Here in the US, fish emulsion is pretty popular. Again, on basic fermentation of this material, we use crude sugar or molasses, third ratio of the fish scraps. I personally like using molasses than crude sugar not just for cost considerations, but molasses minimizes those fishy odors. I have added lactic acid bacteria in fermenting these fish scraps that arrest the foul odors very evident of fish emulsion foliar fertilizers.

Calcium Phosphate

A lot of agriculture advisers have used calcium phosphate for better plant growth, health, pest and disease controls. Natural farmers use this bionutrient very specific. Under the theory of Nutrioperiodism developed by a Japanese horticulturist, Yasushi Inoue in the 1930’s, plants and animals need a very specific nutrient relative to the stage of their development. In the plant, there is the essential vegetative growth , changeover and the reproductive periods. In animals, like humans, there is the infantile, juvenile and adulthood. It is not only critical to provide the right nutrient at the right stage of the development, but also critical to use or apply specific nutrient of calcium phosphate in the juvenile or changeover period. For the plant, for example, we know that nitrogen is critical on the vegetative stage as potassium is critical in the flowering and fruiting stages. It is however, the changeover period that is most critical that will determine the quality of the final reproductive stage. At this stage, an additional nutrient is badly needed by the plant. And this is calcium phosphate. Calcium phosphate is good for plants’ “morning sickness”. It is the stage that additional baby needs to be fed or the process where flower/fruit is about to come. Ash made from soybean stems are excellent for this purpose.

Here is a simple, natural method of generating calcium phosphate. Get eggshells and roast them enough to generate some good ashes. Afterwhich, dip these roasted eggshells on about equal visual volume of vinegar. Allow it to sit for a couple of weeks until eggshells are practically broken down by the vinegar acids. You may use this diluted 20 parts water and can be sprayed or watered to the plants during the changeover period.

When this is applied to that changeover period, it will improve plant health and productivity. The use of calcium phosphate is important to natural farmers. This however, does not mean that we shall forget the nutrient timing application of other critical nutrients for plant growth both macro and micro nutrients, given at the right stages and combinations.

We consider this very important bionutrient needed by the plants used by natural farmers.

Ginger-Garlic Extract

The original recipe of the natural farmers of Korea use not only the ginger and garlic materials, but also Chinese herbs like Angelica acutiloba, Glycurrhiza uralensis and Cinnamomum loureirii. These Chinese herbs have one basic common denominator, they are good for digestion. We have used simply equal amount of ginger and garlic, less these Chinese herbs. This is our natural antibiotics we use for plants and animals.

Remember the high level of sulfur on garlic? It is a good fungicide. The ginger-garlic extract is quite different from the plant extracts we have discussed. We soak the chopped up ginger and garlic in beer or wine overnight or 12 hours. Then we add 1/3 crude sugar and let it ferment for a couple of days like 5-7 days. They we add alcohol which stabilizes and arrests fermentation. The alcohol should be at least 40% proof. The active ingredients of the ginger and garlic is extracted in finale with the use of alcohol similar to herbal tincture we are familiar with in homeopathy. Remember that ginger and garlic are highly medicinal and highly nutritious. We have used them as natural antibiotics and in preventive medicine. We have used this concoction on chicks and chickens and have made them healthy throughout. Of course, we also use them when we see animal weakening and when they are sick. We have used them on fungal problems of plants. We have used them for rheumatism. The uses are enormous both for plants and animals. The potency of your plant extracts are relative to active ingredients that are available from the plants you are extracting. Most importantly, the part of the plants. For example, the energy on the plant part is most concentrated on the seed, fruit, leaf and other parts of the plants, to that general order. Seed is where the plant procreate itself. By simply adding moisture and heat, seed will germinate and will derive its nutrient for growth from its own seed. What natural farmers are saying is that the energy or nutrition is more potent on the seed, fruit will be second and on the leaf third. That’s the reason why when we ferment seeds like grain, our dilution for use is 1:1000 instead of 1:500. This is just a guideline.

Sometimes, you can use more diluted form but with more frequent applications. There is really no clear cut rule. Things have to be based on experimentations, experiences and observations.
Watch the full PDC and ATC from home. As much or as little as you want:
  • Post Reply Bookmark Topic Watch Topic
  • New Topic
Boost this thread!