I have a 6" system in my greenhouse and I use a fan to pull the air through. Mine is a 40 watt, 200 cfm fan on a slider, so I can adjust the speed up and down as I need. Once my system is up and running, I often turn the fan off and if I restrict the air intake on the
feed tube, the system still pushes through, even without a chimney (I have no chimney, the final exhaust exit is lower than the heater and the exhaust channel).
I live in the
city, so I haven't seen a power outage in 10+ years of living here, and I am doing this in a greenhouse. For an inhouse application, I get everyone's concerns and they are totally valid. Two thoughts about the potential dangers. First, I don't think many people run their heaters while they're not there. Mine is out in a greenhouse, so I leave the room and can't see it, but for most folks, if it's in a living room or family room and you're hanging around there, checking the fire, etc. it wouldn't be that big of a deal if the fan died, the system backed up some and some smoke got in the house. If you had enough wood in it to burn for an hour or so and you have left the house with it running, or you put a load of wood in before going to sleep, that would be a bummer, and probably make the idea of depending on a fan much riskier and not worth it.
But here's the second question I don't know/get. I hear people talking about winds shifting and weather patterns affecting their draft. So what if all that happened and your draft backs up, it starts to burn the wrong direction, the chimney cools, it doesn't restart back the good direction and you have the exact same problem. Now it's a question of how often does that happen for folks with rmh's in different types of settings vs how often fans fail when you're not there to catch it.
My dad used to make parts for the aerospace industry, back in the days of the $20 diode that went up in a satellite until they figured out redundancy and that making one incredibly high quality part that should never fail costs way more than having 2-3 good parts that rarely fail and will almost never fail at the same time. So what about a fan at the exhaust and a small fan at the entrance to the feed tube? Now you've pretty much taken fan failure out of the equation as a possibility for failure and you're left with power outage. In some places, that's a real concern, but in Oakland, it hasn't happened in the last 14 years. Plus, if you were really worried about it, that tiny draw on an uninterruptable power supply would leave you power for hours, more than enough time to finish a burn.
One other piece I'm curious about is the ability of a fan to adjust burn conditions, potentially to more optimal burn conditions depending on the material. I don't know if wood that is too wet or pretty oily would like different conditions or if messing with the air flow could ever improve the burn. I wonder if any of the researchers playing with these have tried this? Some folks mess with restricting air into the feed tube and others work with the path the air takes coming into the feed tube, all of this could be controlled externally with a fan. I wonder if there's a theory/actuality that the fire knows what it needs and it always pulls the right amount of air or, if one could use a fan to increase the air flow in a way that would improve the quality of the burn?