It has often been pointed out on this forum that 3 factors are involved in achieving an efficient burn in an
RMH:
time, temperature and turbulence. Let me briefly summarize these 3 (as I understand them) and then add a possible 4th factor for consideration and then ask some questions about applying these factors in our designs.
(1) TIME: The longer the gaseous form of the fuel (smoke or
wood gases) can be kept in the combustion zone (the flame), the more efficient will be the burn and the hotter the temperature. Most bonfires are very smoky because the smoke can quickly rise out of the combustion zone without being fully consumed. This is also why candles, oil lamps and wood stoves produce smoke and soot. But when fuel is forced to travel horizontally through the flame (as in a J-tube, L tube or batch box) rather than being allowed to rapidly rise out of the fire, it is retained longer within the combustion zone and thus burns more completely and produces more heat.
(2) TEMPERATURE: The higher the temperature of the fuel and oxygen mixture is in the combustion zone, the better it will burn and thus the hotter the temperature of the flame. As fuel needs to be in a gaseous form to burn, a solid fuel such as wood needs to be heated, or a liquid fuel such as diesel fuel or furnace oil needs to be vaporized and heated before it will turn to gas so it will ignite. Then, the hotter that gas is, the more efficiently it will burn and the hotter will be the flame.
(3) TURBULENCE: The higher the turbulence is between the oxygen molecules and the molecules of the gaseous fuel (i.e. the better they are mixed together before they reach the flame and while they are within the flame), the higher will be the temperature of the flame and the more efficient the burn. This is why liquid fuel is often forced through a nozzle to make it a fine spray, why oxygen and acetylene gas are forced through a nozzle to mix them for the hot flame of a cutting torch or why propane is forced through tiny holes in the burner of a furnace or barbecue so the fuel and oxygen of the surrounding air are thoroughly mixed.
Here’s a possible 4th “T” factor for consideration….
(4) TOTAL TRANSMISSION OF OXYGEN THROUGH THE COMBUSTION ZONE; The more oxygen molecules there are passing through the combustion zone, the higher the temperature of the flame and efficiency of combustion. The “TTO” is determined by at least 3 factors:
(a) PRESSURE: As atmospheric air pressure increases, the number of oxygen molecules increases in any volume of air. (That is why a fire will burn more efficiently at sea level than on Mt Everest, why runners can perform better at lower altitudes than at higher altitudes because their bodies need oxygen and more oxygen is available at lower altitudes. Also the reason why hypobaric (high pressure) chambers are used to speed healing by getting more oxygen into a patient’s blood.)
(b) VELOCITY: As velocity (draft) of the air passing through the combustion zone increases, the number of oxygen molecules passing through that same space increases and so the temperature increases. (- as a blacksmith uses a bellows to raise the temperature of his forge and wind makes a forest fire burn hotter and more rapidly.)
(c) CONCENTRATION: As the concentration of oxygen in the total fuel-air mixture increases the number of oxygen molecules passing through the combustion zone increases and thus the temperature of the combustion increases. Pure oxygen fed to a fire always produces a much hotter flame than just air. (i.e. an oxy-acetylene torch).
Some of these factors we may not change but how may we increase some of these factors in our designs to achieve the hottest, most efficient flames in our
heaters?
1. Re. TIME elapsed from production of
wood gas until that gas can rise above the flame: It would seem to me that the longer we can keep the wood gases travelling horizontally and thus within the flame, the better. Here’s an unorthodox question….If flames are reaching and ascending in our heat risers, is it possible that we may be allowing unburned fuel to rise up out of the flame?
Should not our burn tubes then be at least as long as the flames produced within them? Has anyone built an
RMH (J-tube, L-tube or batch box ) with the burn tube this long? What effects were observed? I’m considering trying this.
2. Re. TEMPERATURE: When starting a fire in a cold heating appliance of any kind the burn is always somewhat smoky until temperature of the fuel-air mixture and that of the surrounding combustion zone is raised by the heat of the fire. As the temperature of the fuel-air mixture rises, combustion is much more efficient and as the temperature of the burn tube increases, it radiates heat back into the flame to make the combustion temperature even higher. (I understand that this is the rationale behind insulating burn tubes and I don’t deny it. I am simply wondering
how much the combustion temperature (the actual flame temperature) is raised by an insulated burn tube in contrast to a non-insulated one.) Can the temperature of combustion also be raised in other ways? Pre-heating incoming air? Pre-heating wood in a closed air-tight container which feeds hot wood gas into the burn tube? Has anyone tried this?
3. Re. TURBULENCE: Since thorough mixing of oxygen and the hot wood gases is essential to en efficient burn, how can we most effectively mix the two in our designs? The venturi and “P channel” in the batch box is one effective means of accomplishing this. A baffle in the
feed tube of a J-tube RMH to insure unrestricted air flow into the burn tube is another as are a number of design innovations in the shape of cast burn tubes. Are there other possible ways of thoroughly mixing unburned fuel gases with oxygen in our designs? Has anyone tried forcing air through a “manifold” of tiny holes in the sides of the burn tube to mix it with the wood gases there (similar to forcing natural gas or propane into a BBQ to mix it with the surrounding air)?
4. Re TOTAL TRANSMISSION OF OXYGEN: we cannot change the atmospheric air pressure in our particular locations! But are there means by which we can improve the draft?
As the draft in an RMH (a reverse siphon) is affected by the same principles that the flow of
water is affected in a siphon… our draft is increased by (1)
the temperature differential between our inside air and the outside air (hot air rises while cooler air falls and makes pressure pushing hotter air up) (2)
the size i.e. height and cross-sectional area CSA of our chimneys (the greater the volume of heated air rising the greater the draft)
(3)
the height and CSA of our heat risers (4)
the temperature differential between the flue gases inside the core and outside of it The combination of these two factors (super-heated air ascending in the heat riser to be cooled, contracted and fall from the barrel or bell) is the “main engine” which drives the draft of an RMH.
So increasing the height of chimney or heat riser as much as is practical and anything which can be done to increase the temperature of the burn inside the RMH will beneficially affect the draft. So too, any reduction in the height of chimney or heat riser or any restriction or reduction in the CSA of any part of the system, any horizontal flue path or any elbows inserted in the path of the flue gases from core to chimney will also reduce the draft by friction.
If a system has a good natural draft, it may be increased by adding a blower for a more efficient burn. But never build a system which is dependent on that powered draft as it will surely draw back with smoke or even flame in event of a power failure!
Can we increase
the concentration of oxygen in our burn tubes or boxes? Many have experimented with electrolysis of water to produce hydrogen and oxygen. Has anyone tried introducing oxygen produced in this way into the fuel mix of an RMH? As hydrogen is quite flammable and explosive, it likely would not be a good idea to send your rocket into “orbit” by introducing hydrogen into the mix! Are there other practical and inexpensive ways by which the concentration of oxygen could be increased in our burn tubes or batch boxes?