Paul, you have your own unique definition of 'Refined.'
For those whose concerns lean more to safety than smell-o-rama,
I've learned about another horrifying problem with outside air intakes, that I didn't mention earlier.
Apparently, many localities are starting to remove the requirement for outside air intakes, because in some circumstances it can directly cause house fires or smoke danger.
How's that, you say? Isn't the air intake designed to protect me from smoke?
Imagine, if you will, a modern couple.
They own a 3-story house, on the grid, all the mod cons. They both have jobs to pay the
mortgage, and home insurance to protect their property value. They want to install a back-up woodstove for emergencies, in the basement, where it will keep the pipes from freezing if the power goes out. They are going to do this right, so it is an investment and not a liability.
They look into local building codes and find that $150 will cover a permit to install a woodstove themselves. They shell out $500 for a pretty stove with an energy-star rating. Chimney hardware runs another $600, for UL-approved fittings including a new liner for their existing masonry chimney. At this point they are somewhat over budget, but they are educated folks and have tackled other home improvements together; it's amazing what you can find in online DIY instructions. They have a handyman friend help them install the liner from the roof. The outside air intake is a piece of cake by comparison.
This being a basement, their outside air is up at ground level, but easily accessed through the existing light-wells. They take out one cracked window pane, and replace it with a little fitting for this nifty flexible tube, like a dryer vent. It's not nearly as expensive as the chimney fittings, because it's not rated and UL-lab-tested for fire: it's just for handling cool, outside air. They insert the tube into the appropriate port on their new woodstove, and it fits just like it was designed to. Cinch down the fittings, and she's ready for inspection.
Their stove and chimney parts have all their UL stickers in the right places. The inspector goes home happy.
And later that winter, the power goes out.
The owners get take-out on the way home from work, thinking, "Weren't we smart to install that woodstove!"
Now, the house's 50-year-old chimney hasn't been used in at least a decade, and the wind storm that took out the power has been pounding at it for two days, so it's kinda cold. It has been doing what masonry chimneys often do when unused: serving as an invisible cold-air intake into the house, to balance the warm air leaking from the roof vents, upstairs bathroom fan, etc.
As the owner goes to light the fire, the air pressure in the woodstove at this point is positive: cold air coming down the chimney, hot air expanding inside the stove. A little smoke trickles out as he struggles with damp
kindling; he piles in more
newspaper, and finally the fire takes. He shuts the stove door as more smoke curls around the opening.
Luckily, from the fire's perspective, the unwitting owners already provided a secondary escape route: a convenient upward tube, leading to the window well! It's like a quick-heating, secondary chimney!
Unfortunately, this tube was not designed to handle heat or smoke.
If we are lucky, all that will happen is some unsightly smoke marks on the exterior wall, around the 'air intake'/stove outlet, and then the masonry chimney will warm up enough to draft and draw air in the right direction. The masonry chimney is much taller, after all, and its new metal liner may heat up fairly quickly.
But if we are unlucky, the storm conditions may draw not just smoke but flames through the 'air intake' tube. Its material might melt, or expand and break loose from its fittings; or heat up enough to char its mountings. If we are very unlucky, it could get hot enough to ignite the old oil paint on the windowsill, and those beautiful, old, dry hardwood floors. At the miserable tail of the statistical bell curve, the inexperienced owner has shut the stove door and gone upstairs to 'let the thing sort itself out', leaving all this to happen unobserved, and the next thing they know will be the sound of sirens.
That's not nearly as funny as Paul's reason.
There are a lot of ways to avoid this extreme scenario. Just knowing about the possibility is enough that most people can take steps not to re-create it. Ensure the outside air intake does not lead upward from the fire. A separate air intake can open into the room, rather than the stove itself. Or you can choose to install the appliance on the ground floor or above, where a dedicated air intake can take in the outside air down low, and come _up_ to the fire. Better the occasional puff of indoor smoke, than a house fire.
There are good reasons to add more ventilation to a house. If opening a door or window improves the draft on any combustion device, then more ventilation will probably improve indoor air quality too. Kiko's clever heat-exchanger looks good to me; a simpler option is basically screened holes in the wall. (My own lazy solution is just to neglect a few seals in the floor or windowsills; these leak into the walls, and find other leaks in the rest of the building envelope. Thus creating a heat-exchanger that is more random, but less work, than Kiko's clever overhead tubes.)
I now feel strongly that it
should not be mandatory to provide an outside air supply ported directly into a combustion device. This is simply dangerous in basements, where many appliances go. Code compliance should be a means to an end: safety for the building and its occupants. Code is a good reminder, but poor substitute, for experience and
common sense.